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PREFACE

On October 4, 1957, the Soviet Union launched the first
artificial earth satellite in the world, laying the developmental
groundwork for aerospace technology. This has already given man-
kind many important discoveries with many important practical ap-
plications.

As we know, the enormous diversity of tasks in space has al-
ready required the launching of hundreds of artificial Earth sat-
ellites and dozens of space vehicles to the Moon and other planets
in the Solar System. In all cases, we must be able to solve radar
location problems for the space vehicle, or measure its parameters
of motion (its orbital parameters) and to determine the coordinates
or parameters of motion of other objects.

Determination of parameters of motion is ordinarily carried
out in two stages, tantamount to "radiotechnical" and "ballistic"
parts of the problem. The so-called first processing stage is
where signals received by the radar equipment undergo optimum
processing in terms of space vehicle [SV] coordinate determination
and their derivatives with respect to the radar device. The sec-
ond stage is where the SV parameters of motion (orbital parameters)
are determined and given prognosis in terms of these data using
a computerized stellar mechanics device.

P. Olyanyuk's book is interesting in that the direct re-
lationships of unknown parameters of SV motion are formulated
as a function of received signal structure (these signals being
signals with regularly varying parameters) and the potential
accuracy of radio-technical measuring units is defined. The
author devotes particular attention to the relatively great
determinacy of motion of many SV and thus the comparatively great
correlation time of motion parameter fluctuations. This all al-
lows a prolonged accumulation of signal and consequently, one
may increase accuracy of measurement for parameters of motion.
The generalized autocorrelation functions which the author logic-
ally introduces for signals with regularly varying parameters let
us directly evaluate the ponderability of apriori data and ac-
curacy of the measuring means.

A similar approach, though remaining within the framework
of the accepted theory of statistical solutions, may also be of
interest from the methodologic point of view, in that it lets us
clearly evaluate the accuracy of various radiotechnical units and
synthesize their optimum design. The cited material is sufficient
to aid the reader in finding concrete applications for the sug-
gested methodology.

A. Bogomolov
Corresponding Member of the
AS USSR
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LIST OF SYMBOLS AND NOTATIONS

A amplitude of received signal

Ar  amplitude of reference signal, shaped at receiver in

terms of apriori data

Am  amplitude of modulated carrier

a semimajor axis of Keplerian ellipse

aE equatorial radius of adopted reference ellipsoid of

the Earth

B, Ba  correlation matrices of measurement error in apriori

data

B geodetic latitude and its rate of change

D length of side of square antenna or diameter of round

antenna

E eccentric anomaly

e eccentricity of Keplerian ellipse

eE eccentricity of reference ellipsoid of Earth

F Dopplerian frequency drift

f frequency of carrier oscillation

g vector of parameters of motion of space vehicle in

geocentric rectangular system of coordinates

g1' 92 its coordinates and velocity components

H altitude with respect to surface of adopted reference

ellipsoid

I informativeness of trajectory with respect to some

quantity E

IO(x) zero-order Bessel function of imaginary reasoning

i angle of orbital inclination

J transform matrix

Jr' Jc s , Jg transform matrix of differentials in

transition from rectangular, cylindrical, spherical,

and geodetic system to initial rectangular system

Jq Jacobi transition matrix from coordinate E to co-

ordinate g
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k wave number

L geodetic longitude

M0  mean anomaly at time tO
m height of amplitude modulation; number of defined

parameters of motion

N radius of curvature of first vertical circle on sur-

face of reference ellipsoid at point of observ-

ation

NO  spectral density of interference

N(t,r) complex amplitude of interference

n(t,r) instantaneous value of interference

P, Pk' Pj transition matrix from differentials of Keplerian

parameters to differentials of initial conditions of

motion in an inertial rectangular system of coordin-

ates, its kth row and jth column (Chapter VI); radi-

ated power of on-board transmitter (Chapter V).

p parameter of Keplerian ellipse

Qc Qs Q Qg vectors of linear components of coordinates of

cylindrical, spherical, and geodetic systems of re-

ference

q, qa vectors of real and apriori values of parameters of

motion, vector of Keplerian parameters

Aq vector of difference between actual and apriori values

of parameters of motion

q vector of undefined parameters of motion

qc ' qs , qg vectors of parameters of motion in cylindrical,

spherical, and geodetic coordinate systems

Rc , Rs  , R matrix of revolution in transition from dif-

ferentials of cylindrical, spherical, and geodetic

systems of reference to differentials of rectangular

coordinates

Rz(X) matrix of revolution, describing rotation of rect-

angular system of coodrinates around axis z at angle

iv



r(t), ra(t) instantaneous distance between observer and

space vehicle and its apriori value

rE, rZa geocentric radius-vector of space vehicle and its

apriori value

rK, rKa geocentric radius-vector of space vehicle and its

apriori value

rC  linear coordinate of a spherical system

rEc' rEca geocentric radius-vector of center of antenna and its

apriori value

rA radius-vector of instantaneous point of antenna

S active surface of receiving antenna

s(t,r) instantaneous value of signal

T time of observation of duration of measurement

t, t(O) instantaneous time and some defined value of it

U , U U matrix of covariance of differentials of velo-
c s , g

city components of rectangular system of reference

with differentials of components of cylindrical,

spherical, and geodetic systems

u angle of latitude

V volume of space occupied by elements of receiving

antenna

Vc , Vs , Vg matrix of covariance of differentials of velo-

city components of cylindrical, spherical, and geo-

detic systems of reference with differentials of

components of a rectangular system

v velocity of space vehicle

Ugr, Uph group and phase rates of propagation of radiowaves

Wc , W W matrices of direct transformation of differentials

of coordinate components in transition from cylindrical,

spherical, and geodetic systems of reference to rect-

angular

WK matrix of direct transformation of differentials in

transition from Keplerian elements to initial con-

ditions of motion in a geocentric inertial rectangu-

v



lar system of reference

W i  matrix-squares forming the matrix Wk, i = 1,2,3,4

w(x) probability density of a random quantity

x, y, z rectangular coordinates

x =lXlX2X 3 11t  topocentric radius-vector of space vehicle

x = UT/p generalized coordinate (Chapter V)

Y(t,r) complex amplitude of a constructive mixture of signal

and noise

y(t,r) instantaneous value of signal-and-noise mixture

Z space-time autocorrelation function (ACF) of signal

field

ZT autocorrelation function of fluctuations in the

period of revolution of an artificial earth satel-

lite

ZT, autocorrelation function of fluctuations in the rate

of change of periods of revolution of an artificial

earth satellite

z z-coordinate of cylindrical system of reference

E signal energy

Ek signal energy expended during kth interval of correl-

ation of fluctuations of initial phase

a vector of signal parameters

8, 8 vector of random signal parameters, initial phase

y, ya ,y angular topocentric coordinate of space vehicle, its

apriori value and the difference between them

e actual anomaly

K k 2PS/8n generalized parameter

A wave length of oscillation carrier

A , X longitude in cylindrical and spherical system of
c S

reference

gravitational constant of Earth

, r, C cartesian geocentric or topocentric coordinates of

space vehicle at some point in time (initial con-

ditions of motion)
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1 = 2 = 3 =' 4 =' E5 = '  6 =

p traverse distance (Chapter V), second linear coordinate

of cylindrical system of reference (Chapter VI)

T time lag (Chapter II), moment of transit of perigee

(Chapter VI)

law of signal phase modulation

i phase of interference
Sfrequency of modulation, longitude of ascending node

w signal frequency; angular distance of perigee

ala2,a3'1'2, 3 Jacobi elements

H, g, h, L, G, 1 canonical elements

P2 1 W2 L,p'l, first system of Poincare elements

E2 T Ii L,'2'X second system of Poincare elements

g91, hl' M2 ' P1,' K1

a, Q, i, K, Ml, h } orbital elements similar to

a, 2, cosi, K, MI , h Keplerian
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INTRODUCTION

This book treats questions on the theory of signal processing
in aerospace measuring units, which include orbital measuring
units, terrestrial and orbital navigation by satellite, and space
geodetic units. Aerospace measuring units have a number of spe-
cific features, such as the following:

1. They are designed to determine the parameters of motion
of objects whose trajectory has significant determinacy, result-
ing from the relatively small number of random disturbances af-

fecting them. Research has shown that the duration of the para-
meter fluctuation interval of orbits induced by variations in
atmospheric density is on the order of a day [30]. Space measur-

ing units greatly differ from radar units in this respect. Radar

is designed to determine the parameters of motion of objects
travelling in the atmosphere. The correlation interval of a
random velocity component, in the latter case, is on the order of

seconds or minutes.

2. The great quantity of the measurement process lifetime is

the result of space vehicle trajectory determinacy. We know that

the overall duration of this process may be several hours: meas-
urements may be made during the indicated time or in short spans
of time which are not contiguous but fall within the limits of
the orbital parameter fluctuation correlation interval.

3. A particular feature of aerospace radiotechnical units

is the great dispersion of measuring means in space. In spite of

this, with accurate synchronization of the work of individual

telemetry units, the aerospace unit as a measuring system is a

unified entity.

4. To measure the parameters of motion of space vehicles,

we may use both short pulsed signals, whose phase fluctuation

correlation interval is small, and long continuous signals whose

phase fluctuation correlation interval may be extremely great.

Continuous emission is inherent in phase and Doppler systems of

measurement and permits us to produce signals of high energy with

comparatively low radiation power. The development of continuous

emission systems was promoted by successes in the field of signal
generation (high frequency stability) and achievements in some

other fields of modern radioelectronics. In using a continuous

emission system we must deal with the fact that signal parameters

carrying useful information fluctuate within wide limits during

the period of measurement.

5. Aerospace measuring units may be used for direct measure-

ment of instantaneous distances, angles and their derivatives.

The final goal of measurement, however, is to determine parameters

of motion. These may be initial values of coordinates and velo-
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city, Keplerian elements of motion, navigation, geodetic and
geophysical parameters. A typical feature of parameters of motion
is that their constancy interval significantly exceeds the con-
stancy interval of topocentric coordinates and velocity.

6. Parameters of motion are determined under conditions of
interference, which are theoretically nonremovable inteferences
of the fluctuation type.

All these features are intrinsic to orbital measurement
units and satellite navigation and geodesy systems as well.

The theory of aerospace measuring units, which units the
theory of radiotechnical measurement methods for parameters of
motion and the theory of determining orbits, has now been rather
thoroughly developed.

The primary content of the theory of radiotechnical methods
of parameter of motion measurement constitutes problems of iso-
lating signals under the influence of random disturbances. The
modern state of the theory of methods of signal isolation on the
background of fluctuation interference may be described in the
following manner. Methods have been developed to isolate signals
which are purely random processes and have instantaneous values
which are of random magnitude, characterized by certain laws of
distribution. This type of signal is encountered in automatic
control systems, in control systems, in data transmission ana-
log systems, and so forth. Therein, they represent useful in-
formation and yield to the most possibly accurate reproduction.
We are indebted to N. Viner and his followers for the establish-
ment of this. The mathematical fonndations of the theory were
lain by the fundamental work of A. N. Kolmogorov, N. Viner, R.
Ye. Kalman and others [12, 29].

On the other hand, another branch of the theory of signal
filtration has developed in response to the needs of radar and
radio-navigation. The basic content of this theory is the iso-
lation of regular signals having random parameters. As we know,
radar and digital systems of communication use modulated and
unmodulated signals of the harmonic type, whose individual para-
meters (amplitude,frequency, phase, location in time) are used to
represent useful information and are by nature random.

The most characteristic task in this case is the isolation
of signals having random parameters, whose magnitude is kept con-
stant during the measurement process. Since we know the nature
of the signal being received, the filtration process consists
only in determining the informative parameters of the signal,
and not in reproducing the shape of the signal which, in the
receiving process, may become extremely distorted.
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The mathematical foundation of the theory of isolation of
regular signals having constant random parameters is composed of
the theory of evaluating distributive parameters of random
quantities (or processes), which represents an important division
of modern mathematical statistics. The mathematical apparatus of
the theory begins with Gauss, but it received its further develop-
ment in the last few decades in the works of R. Fischer, G. Kra-
mer, Yu. Linnik and other mathematicians, as well as in the works
of V. Kotel'nikov [10], F. Woodword [5], V. Siforov, Ya. Shirman
and other radio specialists.

The development of the theory of signal isolation is now
undergoing further development.

From the evaluation of one or two informative signal para-
meters (the most practical interest is offered by such parameters
as signal lag time, which carries information about range, and
frequency, which describes the velocity of the object and re-
presents a linear term of phase lag in a Taylor expansion)we have
come to the task of evaluating a larger number of parameters. The
number of additionally defined useful signal parameters included,
specifically, the second and higher derivatives of range. These
questions were developed in the studies of Ye. Kelly, R. Vishner,
S. I. Krasnogorov and others. The evaluation of the magnitude
of derivatives of high orders makes possible a more thorough
description of motion and a more accurate reproduction of the law
of motion of an aircraft.

Another trend in the development of a theory of signal iso-
lation is associated with the consideration not only of time, but
also space properties of signals. If the signal is initially con-
sidered only as a process developing in time, and filtration has
been reduced to consideration of just time or spectral distinctions
of the signal and interference, then we would now have in mind
both time and space properties of the useful and interfering
electromagnetic fields in a defined area of space. This approach
is not only associated with the fuller utilization of information,
but also with a different solution of the filtration problem which
allows the simultaneous determination of range and velocity, and
the angular coordinates of objects and their derivatives as well.
In terms of the results of repeated measurement, the space-time
filter makes it optimally possible to determine the position of
an object in space and its rate of travel. Various aspects of
the theory of space-time filtration of signals were developed
in the work of R. Bracewell, G. Urkowitz, S. Fal'kovich [23] and
others.

The operations performed on signals in the process of de-
termining the topocentric coordinates and velocity are sometimes
called primary processing.
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The second constituent part of the theory of measurement of
parameters of space vehicle motion embraces questions of secondary
processing of orbital information, which comprises the basic con-
tent of the theory of determination of orbits.

In its most general aspects, the task of determining orbit
includes the determination of some set of parameters which un-
ambiguously describe the motion of a space object, in terms of
data obtained in measuring geometric and kinematic quantities
connected with the parameters to be determined. These parameters
are determined by functional relationships. In processing meas-
urement data, we achieve a union of measurement data and an
attenuation of random error effects. The mathematical foundation
of the theory of orbital determination is composed of a stellar
mechanics device and the statistical theory of evaluation of
distributive parameters, which was already mentioned. In this
regard, the most practical application was produced by the method
of least squares developed by K. Gauss. A rather complete pre-
sentation of the possibilities of the theory of orbital determin-
ation as it applies to problems of trajectory determination of
space vehicles is given in the famous studies of P. El'yasberg,
V. Yastrebov, E. Akim, T. Eneyev, and others.

Among those methods of data processing which have been
developed in recent years, we should note the dynamic filtration
method developed by R. Bettin, which encompasses the conditions
of data processing realized in proportion to the access of mea-
surement data and proposing the use, in each subsequent stage of
analysis, of the results of trajectory determination from the
preceeding stages. This method enables us to increase the oper-
ational character of data output on the orbit.

The existing theory of space measurement units ensures the
solution of the basic problems facing them, and makes it possible
to plan and make use of high-accuracy units of various design.
Several limitations are intrinsic to it, however, and therefore
it does not fully and in all cases permit us to study the laws
of operation of units which, as we know, are of great complexity.

One of the main shortcomings of the existing theory is the
absence of an organic unity of its constituent parts, which leaves
us with an impression of its imperfection. The division of the
theory of units into constituent parts was put together histor-
ically and reflects most organizationally and technically exped-
ient division of the process of determining parameters of motion
into processes of measuring topocentric coordinates and process-
ing the data of these measurements. Of course, in the analysis
of unit operation and a mathematical description of the processes,
the examination of questions of topocentric coordinates and meas-
urement analysis was done in separate parts which, in most cases,
is fully justifiable. xi



This sort of division may sometimes become a restricting fact-
or. In a framework of an individual examination of "radio" and
"ballistic" problems, it becomes impossible to obtain clear and
sufficiently complete answers to a number of questions which arise
in the selection of efficient specifications for the units. There
are, as we know, interrelated properties of the units which are
of diverse nature, particularly the characteristics of signals
'(their power, duration and spectral makeup), structural character-
istics (composition of the unit, quantity and type of directly
measured parameters), characteristics of a geometric nature
(juxtaposition of systems on the Earth's surface). In the trad-
itional approach, it is difficult to evaluate the potential ac-
curacy of space measuring devices. The comparison of the potent-
ial resources of the devices which differ in parameters to be
measured and the study of several other questions is difficult as
well.

The selection of the basic characteristics of complexes is
extremely complex and requires the consideration of numerous fact-
ors of various type. The mere listing of those quantities on which
an orbital measurement complex depends is enough to convince us of
this.

The accuracy of a single measurement of range and angular
coordinates is defined by the energy, frequency or band width of
the signal received. In turn, the energy of the signal at the
point of reception depends on the distance between the observer
and the space vehicle and thus, on orbital parameters, coordinates
of the receiving point, and the time of measurement.

Orbital determination is equivalent to determination of the
spatial coordinates and velocity vector of the SV. In view of the
fact that the accuracy of angular determination is not always
sufficient, range and Doppler methods of measurement have received
the widest use, where we have recourse to repeated simultaneous
or nonsimultaneous observations from several points on the Earth's
surface. In this connection, orbital determination accuracy is
a function not only of the accuracy of individual measurements,
but also of the juxtaposition of ground stations, orbital para-
meters, the choice of trajectory segments, and so forth.

Therefore, in selecting efficient characteristics for the
entire measuring complex and its individual components, we must
also take account of signal properties and purely geometric fact-
ors. The manner in which these laws develop their mechanisms of
effect requires that the complex be considered a unified space-time
measurement system.

The problem of evaluating potential accuracy is closely linked
with the problem of selecting efficient characteristics for space
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measurement complexes.

Potential accuracy is the customary designation for the
greatest accuracy which may be attained in measurements using a
measuring system which is free of inherent error; the system uses
a certain signal which provides metric information under conditions
of fully defined disturbances. In other words, potential accuracy
is the accuracy attained without instrumental errors with the
optimum reception of a useful signal against a background of inter-
ference.

The information and reference electromagnetic fields in a
given area of space at a given interval of time serve as the sig-
nals in space measuring complexes. Interference is the noise
electromagnetic field which often may be a random field of the
fluctuation type. As the potential accuracy of the space measur-
ing complex we will understand the limiting accuracy of determin-
ation of parameters of motion (orbital parameters in particular)
which is achieved in the most advantageous utilization of the
fields indicated. We can see from this definition that since
quantities determined with the aid of space measuring complexes
are parameters of motion (especially in orbital parameter traject-
ory measurement complexes) and an electromagnetic field is the
signal, the evaluation of potential accuracy should also be made
with a provision for the radiotechnical and ballistic aspects of
the problem.

On the other hand, we know that to determine some of the
same parameters of motion, we may use the electromagnetic field
in a different manner. Useful information on motion may general-
ly be included in several different field parameters (e.g., in
fluctuations of amplitude and frequency of received signal).
There is, of course, no reason to anticipate an identity of mea-
surement results when different metric data sources are used.
For that reason, a comparative evaluation of potential feasibility
of radiotechnical measurement methods differing in the type of
information parameter being used is of interest to us. In other
words, along with the problem of evaluating the potential accuracy
of measurements which describe the potential resources of the
field as a whole, we must evaluate the potential accuracy of
measurements with the addition of various field parameters, i.e.,
the task of evaluating potential feasibilities of diverse methods
of measurement.

It is worthwhile to compare such space measurement methods as
the telemetry and Doppler methods. We should mention that a com-
parative evaluation of the potential accuracy of the Doppler and
other known methods of measuring the rate of motion does not en-
counter any problems. But a strictly comparative analysis of the
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Doppler and, let us say, the phase telemetry methods of coordinate
determination can not be done in the ordinary approach: the
comparison of these methods is impossible in terms of single
measurements of frequency and phase. A comparative evaluation of
these methods in the stage of data processing, without allowance
for energy and properties of the signal is not correct enough.
The sole approach to the measurement problem, which was discussed
above, also happens to be rather attractive in this instance.
The potential accuracy, thus, is an important technical character-
istic of the measuring complex, reflecting the ultimate resources
of the complex as a unified measurement system.

In arranging the methods for evaluating potential accuracy,
it is possible to evaluate the degree of perfection of various
types of measuring devices, to make note of ways of improving
them, to define the degree of perfection of methods and means
used to isolate signals from interference, and to state recom-
mendations for means of improving the methods.

We know that the current theory of optimum signal filtration
and evaluation of potential accuracy of radio-navigation and
radar systems has been extremely fruitful, and has had not only
purely theoretical but also a rather great applied value.

This study will attempt to state the basic questions of the
theory of space measurement complexes which is founded on the con-
sistent application of methods of the theory of statistical solu-
tions and consideration of trajectory determinacy as constituting
one of the basic features of the measurement process. The pro-
cess of measuring parameters of motion, which includes both prim-
ary and secondary signal processing, can be seen as a unified
process whose goal it the determination of orbital parameters,
navigational or geodetic quantities, i.e., "secondary" parameters
of mtoion.

In turn, a measurement complex which is made up of a large
number of measurement means, concentrated in space and function-
ing in coinciding and non-coinciding segments of time of differ-
ent durations, can be represented as a unified system, implement-
ing space-time filtration of signals for direct determination of
the previously noted "secondary" parameters of motion.

It may generally be stated that this theory is some general-
ization of the current theory of space measurement complexes for
signals whose total duration equals that of the fluctuation cor-
relation interval of the parameters of motion. Within the frame-
work of the given generalization, we must view the processes of
primary and secondary signal processing from unified positions of
the theory of statistical solutions and development of methods
for evaluating potential accuracy of space measurement complexes
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of various types, including complexes which contain Doppler
systems of space trajectory determination or navigation and geo-
detic parameters.

The book contains an introduction and six chapters.

The first chapter describes the basic working model of the
signal -- a signal with regularly varying parameters -- and re-
veals the basic properties of signal and interference fields af-
fecting space radiotechnical complexes.

The second chapter is devoted to methods of direct evaluation
of the parameters of motion in terms of the signal acting in a
gien field of space. Therein are cited algorithms for optimum
filtration of signals with regularly varying parameters acting
against a background of an additive random interference field;
and the properties of the autocorrelation function of the aux-
iliary signal field are studied.

The third chapter contains an analysis of evaluative accuracy
for parameters of motion of SV with optimum signal processing;
analytical expressions are given for the maximum value of the
secondary derivatives of autocorrelation functions of the signal
field, characterizing the potential accuracy of measurements with
complete utilization of data resources of the signal's electro-
magnetic field.

The fourth chapter is devoted to an analysis of the potent-
ial accuracy of individual methods of measurement -- phase and
pulse telemetry, Doppler, and goniometric. Therein are cited
examples of a phase telemetry system, whose principle of action
is close to the optimum of the planetary radar system of the
Academy of Sciences of the USSR.

The fifth chapter contains a discussion of potential accuracy
of determination of various systems of parameters of motion. An
attempt is made therein to divide the evaluative process into two
independent parts: the measurement process and the coordinate
transformation process. The chapter examines several properties
of coordinate transformations and an example is given of evaluation
of potential accuracy of the telemetry and Doppler methods of
measuring SV parameters of motion in one pass over the field of
vision. Data are then given on the informativeness of various
segments of the measured trajectory obtained through the use of
the research method presented in this study.

The sixth chapter examines the properties of matrices of the
basic coordinate transformations used in determining orbital para-
meters. Methods are given here for computing the transition
matric and formulary relationships for the most common coordinate
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transforms. Chapter Six was written by V. I. Mikhaylik.

The author considers it his pleasant duty to express his
profound acknowledgment to S. I. Bychkov for his tremendous aid
in the study at all stages of the manuscript's development. The
author thanks A. F., Bogomolov, Corresponding-Member of the Acad-
emy of Sciences of the USSR who was able to become familiar with
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about it. In developing the basic ideas of the book, the author
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Sirobaba, Yu. K. Khodarev and V. S. Shebshayevich, to whom he
would like to express his sincere gratitude. The author also
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Nevol'ko for their useful comments in editing the manuscript.

xvi



OPTIMUM SIGNAL RECEPTION AND THE POTENTIAL
ACCURACY OF SPACE MEASURING COMPLEXES

P. Olyanyuk

Chapter 1 /19*

BASIC FEATURES OF SIGNALS AND INTERFERENCE IN SPACE MEASURING
COMPLEXES

1. Parameters of Motion

The parameters of motion are constant quantities which un-
ambiguously describe the law of motion of an object in a given
interval of time. The number and physical meaning of the parameters
of motion are defined in terms of the mangitude of forces which
give rise to motion, their nature, and the inertial properties of
the object.

The flight of an airplane in the atmosphere, the motion of a
ship on the seas, the movement of an automobile on the ground --
these all result from forces which, in addition to regular con-
stituents, have constituents which are random in nature and are
very great and rapidly fluctuating in magnitude and direction.
The fluctuation rate of random quantities, as we know, may be
ascertained in terms of the magnitude of the correlation interval.
The duration of the correlation interval of fluctuation rates of
ground and surface objects is not great, usually not in excess of
several or tens of seconds.

Which parameters should be used to describe the motion of such
objects? Toward that end, it would seem we must use the values of
coordinates and velocity which are related to points in time which
are separated from one another by a quantity on the order of the
correlation interval duration. Higher derivatives of the coord-
inates in time may be used for a more precise description of mot-
ion.

The law of motion of terrestrial objects may be defined using
radar-equipment methods by the simultaneous measurement of dis-
tances from several ground points or from one range and its angles.
We may also measure the time derivatives of these quantities,
usually being limited to a definition of the first derivatives.

* Numbers in the margin indicate pagination in the foreign text.
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The duration of measurements is small: it should not exceed the
duration of the correlation interval of parameters of motion.

Due to the variability of the magnitude and direction of velo- /20
city, the prediction of motion is accompanied by great errors. For
that reason, apriori data on motion is of low accuracy and is not,
as a rule, utilized in the measurement process.

The flight of a space vehicle (SV) is chiefly affected by the
gravitational field and the forces generated by its engines. These
forces are regular in nature. In addition to effects of a regular
nature, the motion of objects in space is also affected by random
disturbances which are comparatively small. Therefore, the durat-
ion of the correlation interval of velocity fluctuation of the SV
exceeds a similar quantitiy for earth-bound objects by several
orders and may go as high as many hours or days. The motion of
a SV, thus, is almost completely determinant in nature.

The flight of a space vehicle is also defined by coordinates
and velocity which are related to some specified point in time
within the correlation interval. But since the duration of the
correlation interval of SV velocity fluctuation may be measured
in hours and days, as was mentioned, the motion of a space vehicle
is usually described by only six parameters for the entire inter-
val of operation of the object or for a significant part of this
interval. As was stated, in similar stages of operation of ter-
restrial objects, in terms of duration, we must include a large
number of similar six-element parameter groups.

SV coordinates and velocity at a specific moment in time are
often called the initial conditions of motion, because they are
constant quantities defined in the process of integrating equat-
ions of SV motion. In SV motion in a central gravitational field,
the role of parameters of motion may be filled by Keplerian or-
bital parameters or some other sets of geometric and kinematic
quantities. The motion of objects is a gravitational field of a
more complex structure is described by osculating orbital elements.
SV parameters of motion are also called orbital parameters. The
duration of the process of determining SV parameters of motion may
be many hours.

The direct determination of orbital parameters is, as a rule,
impossible. Measurements are made of the range from earth-bound
points, angular topocentric coordinates of the space vehicle,
radial and angular velocities, and the orbital parameters are /21
defined by processing measurement data in the computer.

Under determinant motion conditions, instead of a simultaneous
measurement of ranges and radial velocity constituents with re-
spect to three spaced points, we may restrict ourselves to the
measurement of ranges and the corresponding velocity constituents
2



from one ground point. In this connection, measurements from one
point are only required to be made in specified time intervals.
In order to reduce random error, the number of measurements is
usually large to reduce their influence on the results of the
measurements.

A distinctive feature of the parameters of motion, i.e., those
quantities which are the final goal of the measurement process, is
their constancy over the entire interval of measurement. Directly
measured quantities within this interval typically fluctuate quite
rapidly and within wide ranges. In the rapid fluctuation of meas-
ured quantities, the measurement process appears to become more
complicated. The quality of quantities measured under similar
conditions, as a rule, is lower than the quality of measured quant-
ities which fluctuate slowly. We may theoretically free ourselves
from the rapid fluctuation of measured topocentric coordinates if
we measure the slowly fluctuating deviations of defined coordinates
from their predicted values instead of measuring rapidly fluctu-
ating instantaneous topocentric coordinates.

In orbital measurement systems, the implementation of such a
procedure may be done in practice, because the flight of objects
in outer space has a higher degree of determinacy than the motion
of terrestrial objects. By using deviation measurements in place
of the theoretical values, random errors may be leveled out.

Therefore, in determining SV parameters of motion, we may ad-
duce apriori data on the parameters of motion. These data are,
of course, not accurate enough. For that reason, apriori values
of the parameters of motion are usually represented as random
quantities, described by fixed laws of distribution. Nonetheless,
the use of these data greatly simplifies the solution of the task
of determining the parameters of motion which, under these con-
ditions, would involve the problem of adding accuracy to the
apriori data.

In examining the overall picture of procedures for determining /22
SV parameters of motion, a description of the entire mechanism of
determination of these constants must be used which would not re-
quire the use of rapidly fluctuating topocentric coordinates; and
in which the entire procedure of determining the orbital parameters
would constitute the one and only measuring procedure. In under-
taking to solve such a problem, of course, we must realize that
there is no basis for considering a similar unified approach as
a practically expedient procedure for processing signals to re-
place those procedures currently in use. Moreover, the division
of the orbital determination procedure into technically uncor-
related operations is simply obligatory in the majortiy of applied
cases. In theoretical analysis, however, the "unified" approach
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may prove useful, since it possesses a minimum amount of initial
restrictions and is free of any provisional agreements on the
measurement methods. These features of the given research method
enable us to rather strictly examine the question of the potential
resources of space measuring devices and a number of allied prob-
lems.

1.2. Some Data on the Fluctuation of the Parameters of Motion of
Space Vehicles

The preceeding section stated that SV parameters of motion were
considered as random quantities, invariable during the period of
observation, defined by set laws of distribution.

In reality, however, the parameters of SV motion are variable,
and in the course of time we observe secular, periodic and random
fluctuations in these quantities. Secular and periodic fluctuat-
ions are induced by disturbances of a regular nature. Random
fluctuations of the parameters occur under the influence of forces
which fluctuate in accordance with a random law, first among which
is the force of aerodynamic resistance.

Secular and periodic fluctuations of the parameters of motion
may serves as a source of data on the structure of the gravitat-
ional field and are taken into account in processing measurement
results. Random fluctuations are a source of error in determin-
ing orbital parameters and impose certain limitations on the meth-
od of measurement.

Therefore, in a more precise examination , SV parameters of /23
motion are random processes, whose mathematical expectation has
a secular and periodic variation. In order to properly inter-
pret measurement results, we must understand the basic statistical
characteristics of these processes and, in particular, a quant-
ity such as the correlation interval duration. The significance
of this parameter of the random process is due to the fact that
it defines the permissible duration of the measurement process.

Some data have recently appeared in the literature [8, 9, 30]
which describe the duration of the correlation interval of SV orb-
ital parameters which are subject to the retarding action of the
terrestrial atmosphere on their motion. Unfortunately, the amount
of experimental data accumulated by research is still small and
they are only related to a limited range of conditions. These
data, nonetheless, let us form some idea on the order of magnitude
of the correlation interval. In particular, in study [30], the
results are given for orbital acceleration of the artificial Earth
satellites "Explorer I" and "Explorer IX". Orbital acceleration
implies the rate of fluctuation in the period of revolution of the
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satellite, which describes the action of aerodynamic resistance.

Table 1.1 gives orbital parameters for the Explorer I and
Explorer IX satellites and some other data.

TABLE 1.1. DATA ON EXPLORER I AND EXPLORER IX
Parameters Explorer I Explorer IX
orbital inclination, degrees 330,2 380,86
height of perigee, km 357 634
height of apogee, km 2,562 2,583
eccentricity 0.141 0.121
initial period of revolution, min. 114.8 118.28
area of cross section, m2  0.26 10.8
weight, kg 14 6.63
Launch data 2/1/58 2/16/61

-Gdp Figures 1.1 and 1.2 give

i- orbital acceleration the results of orbital accel-
8 eration and autocorrelation

S / functions of orbital acceler-
2 / 3 ' ation for these satellites.
3650 3s JM 3 330 3r Lays
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Figure l.la illustrates /24

0.8 autocorrelation function the relationship of Explorer
I's orbital acceleration as a
function of time; Fig. 1.1B
illustrates the autocorrelat-
ion function of this process.
From Fig. 1.1C we can see that
the autocorrelation function
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Fig. 1.1. Orbital acceleration (a),its autocorrelation function (b),
and autocorrelation function of fluctuations (c) of Explorer I,
in elliptical orbit, perigee of 350 km. 5



momentum of revolution.
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0 _ ion function shown in Fig. 1.1B,
37340 360 380 400 420 "0 of periodic constituents, is

a) shown in Fig. 1.1C. It describes
.. autocorrelation function the fluctuation of orbital para-
•* meters. It follows from Fig.
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.005 . several days.
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o02 -- plorer IX. This satellite was

autocorrelation function of a gas-filled balloon and thus
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001 Pnot accompanied by fluctuation
in the force of resistance. How-
ever, due to the large area of
cross section and the low mass
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-0,02 was noticeably affected by the
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light pressure (PR)as functions dynamic resistance. Fig. 1.2B
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(b) and its fluctuations (c) for ance, and Fig. 1.2C shows thesame autocorrelation function
Explorer IX, elliptical orbit, after removing the contituentafter removing the constituent
height of perigee 630 km. having the 27-day period of

fluctuation from it. We can see from the graph that the fluctuat-
ion correlation interval for the rate of change in the period of
revolution is 2 days in the given case.

An increase in the duration of the correlation interval of
the second satellite is quite natural, since it was in a higher
orbit and owing to the greater rarefaction of the atmosphere, the
absolute quantity of the force of resistance arising in its motion
was less.
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Thus, available test data attest to the fact that for arti-
ficial satellites whose trajectories are 350 to 630 km distances
from the Earth, the correlation interval of fluctuation in atmo-
spheric resistance extends from a quantity somewhat less than one
day to a quantity equal to two days.

Unfortunately, in terms of existing data it is impossible to
form an idea on variations in the magnitude of the correlation
interval as a function of solar activity and other factors. In
article [30] it is noted that they describe the upper boundary
of values of correlation intervals. Data on the values of cor-
relation intervals situated near the lower boundary of quantities
encountered in practice are still absent from the literature.
There are also no data on correlation intervals of fluctuations in
aerodynamic resistance at altitutdes less than 350 km, and we may
only form a rather approximate idea of them.

The cited experimental data are directly related to the fluct- /27
uation rate of the satellite's period of revolution and in some
way characterize the magnitude of the correlation interval of
fluctuation in the parameters of motion, which are the research
goal of this study. It is clear, to begin with, that since the
fluctuation rate of the period of revolution is a derivative of
this period, we may judge the period correlation interval in terms
of the duration of the fluctuation correlation interval and con-
sequently, the semimajor axis and eccentricity of the orbit. In
this regard, fluctuation changes of these quantities, at first
glance, may be considered stationary processes. This implies that
the fluctuation correlation function for the rate of change in the
period of revolution of an artificial Earth satellite (AES) is
equal to the second derivative of the correlation function
of the fluctuations of this period:

ZT, (T) = Z"(T).

In turn, as illustrated by the autocorrelation function of
exponential form, we can see that the durations of the correlation
intervals of the two similar processes are identical. It is use-
ful to note that the exponent, as one possible version of an ap-
proximating function, is distinguished by the feature that its
second derivative, which must reflect the correlation function of
the derivative of an initial random process, reflects the basic
properties of the correlation function as does the function per
se.

Therefore, we may assert that previously discussed data on the
durations of correlation intervals are related not only to fluct-
uations in orbital acceleration, but also to fluctuations in
orbital velocity, period, and the semimajor axis.
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As concerns the other orbital elements, random fluctuation
in aerodynamic resistance will apparently not have a noticeable
effect on them. The only exception is orbital inclination, which
will slowly fluctuate under the influence of the force generated
by the daily rotation of the atmosphere. A satellite, entrained
by the rotating atmosphere, will not only "sense" fluctuations in
the density of the medium, but winds as well, whose velocity,
according to some data, may reach 320 km/hour. There are still
no experimental data, however, which describe the duration of the
correlation interval of orbital inclination fluctuations in the
known literature. For that reason, we shall consider that the
duration of the interval is at least 1-2 days in any case.

It is still impossible to state anything specific about the /28
order of magnitudes which describe, the duration of correlation
intervals of fluctuation of other orbital elements. We may only
suupose that they exceed by many orders the durations of fluct-
uation correlation intervals of the semimajor axis and orbital
inclination.

The general conclusion which ensues from the cited data con-
sists in the fact that the duration of measurement intervals of
AES orbital parameters, at altitudes of perigee from 350 to 630
km, should not exceed 1-2 days.

1.3. Signals

Reference and relayed electromagnetic fields within the area
of disposition of receiving antenna elements serve as signals in
space measuring complexes. These fields may be defined by value
sets of intensity at all points in the indicated area.

The field intensity of the reference signals, in particular,
may be represented in the following complex form:

So = Ao(t) exp(it), (1.3.1)

where A0 (t) = A0 (t) exp (i 4 B) is a complex amplitude; and

AO(t) = AO(t) exp [i f(t)] is a modulating function.

The notations adopted here are: k = m/uph -- wave number;
ph - phase velocity of radiowaves; 8 -- initial signal
ph

phase.

The relayed (or reflected) field may be described by the
formula

s(t)=A(, r) exp (i t (1.3.2)



where
w A (t, r)= A(t - 2r/vg.exp (- i 2 kr) exp i3 ;

A(t - 2r/vd =A(t -- 2r,'v exp lip (t - 2r,'

r - instantaneous distance from SV to point of measurement;

gr -- group rate of propagation.

Let us assume that the source of the relayed field is unique
and is integrated with the point of SV position, and the elements
of the receiving antennas discretely or continuously fill some
limiting area of space which may arbitrarily be called the volum-
etric antenna area.

The amplitude of the assumed field, as well as the phases of /29
its carrier and modulating oscillations are a function of twice
the value of the instantaneous distance between the SV and the
point of observation, which is equal to the modulus of difference
of two radius-vectors (Fig. 1.3):

r =IrS - rEl (1.3.3)

one of which (r ) describes the instantaneous spatial position of
the SV; the second (rE) -- the point of observation.

The instantaneous distance from the point

antenna S; of observation to the SV may also be represent-
ed in the following manner. Located at some
fixed point on the antenna (which may be cal-
led its center)is the origin of a topocentric

Ssystem of coordinates, the radius-vector of
the instantaneous point of the antenna is de-

E noted rA(Fig. 1.4); the instantaneous distance

between the SV and the point of observation may
also be expressed in the following formula:

0

Fig. 1.3. Radius r = jrS - rEc - rAl' (1.3.4)
vectors of point

of observation rE, The source of data on parameters of motion
space vehicle rS , may be not only the field of the reflected or
and instantaneous relayed signal. The field generated by the /30
distance between autonomous on-board transmitter may also be
SV and observation such a source; its emission is not synchron-
point r. ized with the emission of ground reference

generators (non-feedback operating mode). It
seems that in the non-feedback operating mode, the received sig-
nal is retarded with respect to the emitted signal by a period of
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time proportional to the distance between
the SV and the point of observation.

antenna
The radius-vectors of the SV and

r* ~the center of the antenna may be given
in the form of some regular functions
of some number of constant quantities
and time. These constants are para-

PA meters of SV orbit and the observer's
C A coordinates. The entire set of these

constant parameters we will call the
parameters of motion. The parameters of
motion are usually represented by multi-
dimensional vectors, whose individual

0 constituent parts describe the orbit and

Fig. 1.4. Geometric the observer's position. We will hence-

relationships in mea- forth denote the vector of the parameters

surements using a space of motion by the letter q. Thus, the
instantaneous distance between SV and
the observer may be presented as a
function of the parameters of motion and

time:

r = r(q, t).

These arguments indicate that amplitude, instantaneous phase,
and signal time lag, usually called the signal parameters, in
determinant motion are known regular functions of time. For this
reason, signals operating in space radiotechnical complexes may
be called signals with regularly varying parameters. The regular
nature of the relationship of signal parameters as a function of
time and the parameters of motion is a specific feature of signals
emitted from objects travelling along determinant trajectories.

We may quite arbitrarily divide signal parameters into in-
formative and non-informative. Informative parameters are those
which are directly utilized to obtain information on the parameters
of motion; non-informative parameters are those which are not di-
rectly utilized to obtain similar information.

The informative parameters may be such as instantaneous phase,
frequency, time lag, and sometimes even signal amplitude.

Non-informative parameters are either constants, regularly
variable, or randomly variable quantities, whose statistical pro-
perties are known. The initial signal phase is usually such a /31
parameter. The same information contained in amplitude is often
not utilized.
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Several signal models will be discussed subsequently which
differ in non-informative parameter characteristics.

To begin with, we must examine signals with regularly variable
amplitude and known initial phase. These type of signals, as we
know, are not realized in space measuring complexes, but a signal
model having a known initial phase we shall include in those models
discussed, since in some instances the properties of actual signals
may be profitably compared with signal properties of this hypo-
thetical model. Signals having a known initial phase will be cal-
led first model signals.

In addition to signals having a known initial phase, we will
also examine isolated signals having an initial phase whose magni-
tude is constant for the entire existence of the signal and random
in transition from one signal realization to another. The ampli-
tude of such signals, which we will call second model signals,
vary in accordance with a regular law in correspondence with a
change in distance between the SV and the observer. The initial
phase is uniformly distributed from 0 to 2r.

The third model corresponds to isolated signals having a
random initial phase and amplitude. The law of distribution of the
initial phase, as before, is assumed to be uniform, and amplitude
conforms to Rayleigh's law of distribution.

It is also expedient to emphasize sequences of signals having
random initial phases and amplitudes. Such sequences shall be
called fourth model signals. We will ultimately examine continuous
signals having slowly fluctuating initial phase and amplitude.

Generally speaking, the electromagnetic field used in space
measuring complexes is a complex wave process having a fluctuating
phase and amplitude. The fluctuations of parameters of this pro-
cess are, on one hand, the result of fluctuation effects within the
generator (thermal and shot noise, "technical" fluctuations) and
on the other hand, the result of random heterogeneity of the medium
in which this process is propagated. In this regard, fluctuations
generated by various physical factors differ in their statistical
properties. Each mechanism has an inherent time and space correl- /32
ation interval, the simple separation of effects due to different
mechanisms not always being possible: these processes do not al-
ways conform to the principle of superposition. But, taking into
account the large duration of the observation interval and the
small specific gravity of rapid fluctuations of small intensity,
we may be limited to the assumption that signal amplitude and phase
fluctuate quite slowly. They remain constant during the correlation
interval and fluctuate in conformity to a random law during trans-

.ition from one correlation interval to another. In relation to
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experimental data related to modern, high-stability quartz fre-
quency standards used in the AES in conjunction with or without
atomic standards, let us assume that the interval of the time
correlation of phase fluctuations may reach several seconds and
minutes, while the interval of space correlation -- hundreds of
thousands and millions of kilometers.

It is apparent, in this regard, that continuous signals hav-
ing slowly fluctuating amplitude and phase may, at first glance,
be represented as a sequence of pulses adjacent to one another,
which have random phase and amplitudes. In other words, an analysis
of processes in systems having such signals, which we shall call
fifth model signals, may reduce to the analysis of processes in
systems having fourth model signals.

The received signal in space radiotechnical complexes may
thus be represented with the aid of the formula

s = s{a[r(q, t)], 8, t }, (1.3.5)

where a -- the vector of regularly variable signal parameters;
8 -- the vector of signal parameters which are random quantities
or random processes; q -- the vector of definable parameters of
motion.

In some cases, the parameters of motion must be subclassified
as definable and non-definable. For example, in navigation pro-
blems for ground objects according to AES, the definable parameters
are the parameters of motion of the observer situated on the Earth
or near the Earth. The orbital elements are considered given in
this regard. In orbital measurements we are given the coordinates
of ground points and the orbital parameters are defined. Thus,
generally the vector of the parameters of motion should be sub-
divided into the vector of definable parameters q and the vector
of non-definable parameters q . The signal at the point of re- /33
ception is therefore written:

s = s{a[r(q, qp, t)], B, t} . (1.3.6)

We should add that, in general, the signal field is polar-
ized and it must therefore be represented by three components of
the corresponding vectors. However to simplify the problem, let
us confine ourselves to an examination of only one component of
the polarized field, assuming that the type of polarization is
taken into account in the design of antennas.
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1.4. Brief Characterization of the Field of Random Interference

The influence of diverse natural interferences on the radio
channels of space measuring complexes may be reduced to the in-
fluence of random vectorial electromagnetic fields on the element-
ary antennas of the complexes. The antennas, in general, are com-
pletely or partially polarized, heterogeneous, anisotropic, and
non-stationary. Of the greatest practical interest are the random
fields formed as a result of superposition of a great number of
fluctuation fields created by sets of more or less uniformly con-
centrated in space sources of noise emission. These fields con-
form to the normal law of distribution, represented by comparative-
ly simple analytic relationships, which are extremely suitable for
use inconducting diverse studies [2].

The ideas on random electromagnetic fields were formulated
as natural generalizations of ideas on random processes which in-
clude functions of time, whose instantaneous values are random
quantities which conform to specific laws of distribution. How-
ever, in identifying a random process with a specific set of random
quantities, we must take into account that this set is not equi-
valent to a simple sum of individual random quantities and repre-
sents a much more complicated phenomenon. The particularity of
a random process is that between the elements of the set of random
quantities into which it may be factored, there may exist a specif-
ic interrelationship. For that reason, a random process is char-
acterized by a multidimensional law of probability distribution,
which generally is not divided into parts related to separate /34
random quantities, and breaks down into a large number of one-di-
mensional laws only if there is no relationship between its in-
stantaneous values. Moreover, random interference with which we
must deal in radio technology is continuous in nature and, strict-
ly speaking, is identical to an infinite set of random quantities.
For this reason, the distributive law of interference is represent-
ed not by a function, but by a functional of the probability den-
sity [20].

The random electromagnetic field is a set of vectorial ran-
dom processes effective in some area of space or, in other words,
a vectorial random process, whose instantaneous value is not just
a function of time, but also a function of the spatial coordinates
of the point of observation. It is identical to three scalar ran-
dom fields, each of which is described by the corresponding func-
tional of the probability density. In this regard, the separation
of the distributive law of random field realizations into distrib-
utive laws of random processes at individual points in space is
likewise impossible. This division is only possible in the absence
of a correlative relationship between the corresponding random
processes.
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Analytic expressions for the functionals of the probability
density of scalar components of the random vectorial field of the
normal type may be derived from the expression for the function of
distribution of discrete values of a normal random process, which
has the following form:

W(d1 [nT B-, nw(n,)= ( ) detB, n (1.4.1)

where n -- is a k-dimensional vector-column, whose components are
elements of random process selection, whose volume is equal to
k; nT -- the transposed vector-column; B -- the correlation matrix
of interference, which is of square form k x k; det Bn -- the mat-
rix determinant.

By introducing the matrix C, the inverse to the correlation
matrix Bn, the sign of the exponent of formula (1.4.1) may be
written in the form

k k

Sn'Fr B-' n -- - nr Cn - ni'tjCi,
.2 22 n 2 ' (1.4.2)

where, by definition, CBn = 1 -- a unit matrix which is equivalent
to the relationship

c b Cj" -. r= where i = j,0 where i A j.
m=l

Let us compose an expression for the functional of the pro- /35
bability density of a normal random process. The unknown funct-
ional is derived from (1.4.1), if the number of divisions of the
segment of time of existence of noise is to approach infinity
(and thus, if the time interval between divisions approaches
zero):

win (t) l = lim wl n,J .
- (1.4.3)

With an increase in the number of divisions of the area of fluc-
tuation of the argument, the double summation (1.4.2) in the ex-
ponent sign of (1.4.1) approaches the double integral
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i i-cij -- n(t )11(t2), t) , (1.4.4)
k-- 2 2"

where A is the distance, approaching zero, between two values of
the argument. This equality is valid if in the limiting process
A 0 the relationship '

S-a(ti), tj)2 (1.4.5)

is satisfied; it may be written as

d2c = a dt, dt

or as
a = d'c/didt2,

where cij -- an element in matrix C, inverse to the correlation

matrix. In other words, if we differentiate the random process
n(t), the infinite double summation may be written as a double
Stieltjes integral

im i I-. , o o
T TT

2 (t)n(t,)adt, d/ 2 , (1.4.6)
20

the function a(t1 , t2) being connected to the correlation coef- /36
ficient by the integral equation

T

jB(t, t2) a(t,. t2) dt = (t - t), (1.4.7)
0 0

which is an analog of the equation

CB= I. / (1.4.8)

After introducing the functional

T

n(t2) a(t,, t()dt2  z( (1.4.9)

15



the limit of quadratic form in the exponent of the normal dis-
tfibutive law may be rewritten as follows:

k T

Im - nnc = - 2  t)z)dt (1.4.10)
i-lj=I o

where z(t) is defined by equation (1.4.9), which is equivalent to
the condition

T
n(t)= .B(t, u)z(u)du,

which is easy to verify by multiplying equation (1.4.7) by n(t2)
and integrating both parts from 0 to T.

When a number of divisions of the range of existence of argu-
ments approaches infinity, the coefficient before the exponent
also approaches infinity, but this does not cause any difficulties
since in the problems under'discussion we are using a ratio of
functionals of probability densities which remains finite.

The expression for the functional of the probability density
of a stationary uncorrelated random process ("white" noise) is
somewhat simplified. Since in this regard

B (t,, t2)= No (t
2 (1.4.12)

where NO -- the spectral density of noise, then z(t) = n(t) and

,2m c;N (d (1.4.13)

Therefore, for uncorrelated noises, the integral in the expon- /37
ential sign: expresses the energy of the fluctuation process.

As was noted, a random process is a function of a point in
a four-dimensional time-space manifold. This means that the pro-
bability density of a discrete sample of values of the normal
field is represented by a formula analogous to formula (1.4.1):

w nnl=Kexp n B1I n (1.4.14)
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but the volume of the sample now increases substantially. The
sample is formed, in this case, not only as a result of the di-
vision of effect time of interference on segments of At, but also
as a result of division of the spatial region of the field setting
into several elementary volumes of AV. If the number of such
elementary volumes is equal to k, the volume of the sample will',

constitute m = k£. If the volume sample approaches infinity, we
will switch from the distributive function of (1.4.14) to the
functional distributive density of a large number of random field
realizations. This limiting process is similar to the one given
in formula (1.4.4), but now in place of the function n(t)dt, we
must use the function n(t, r) dtdV and integrate not only in terms
of time, but also in terms of the volume in which the receiving
antennas are arranged. It is likewise clear that instead of the
time correlation coefficient a(tl, t2 ) we must use the coefficient
of space-time correlation a(tI , t2 ; rl, r2 ). As a result, we
arrive at the functional

o) V

whose subintegral coefficient z(t,r) satisfies the Fredholm
equation

n(t, r) B(t r, , p) z(,p) did V.
o V (1.4.16)

Ultimately, for the functional of the probability density of,
a normal random electromagnetic field we derive the relationship

[lt.2] exp (1.4.17)
0 V

which is extremely general in nature and is suited for describing /38
both homogeneous stationary and isotropic, as well as heterogen-
eous, nonstationary, and anisotropic random fields.

It should be mentioned, however, that natural random electro-
magnetic fields, especially fields of thermal noise, may at first
glance be considered as stationary homogeneous and isotropic fields.
In addition, the width of the fluctuation spectrum usually exceeds
the width of the signal spectrum, making it possible to approxim-
ate the spectrum of actual interference, which is a function of
frequency as interference having a uniform spectrum ("white"
noise), i.e., interference whose time correlation coefficient is
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represented by a Dirac delta function. Finally, the dimension of
the space correlation interval of thermal noises does not exceed
the magnitude of wave length order, allowing us to approximate
the function of the space correlation by a Dirac delta function
as well. Therefore, with the foregoing assumptions

B(t, r, N, p)= -~(t-) (r (1.4.18)
2

z(t, r) - n(t, r).
No

Consequently, the functional of the probability density of a homo-
geneous stationary delta-correlated random field is represented by
the formula

w [nt ri= exp {1Sn2 (t, r)dtdV (1.4.19)
No

where NO -- specific spectral density of flubtuations, which is
equal to the energy scattered in an isolated volume per unit time.
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Chapter 2 /39

EVALUATION OF PARAMETERS OF MOTION AND THE OPTIMUM FILTRATION
OF SIGNALS HAVING REGULARLY VARIABLE PARAMETERS

2.1. Methods of Direct Evaluation of Parameters of Motion in
Terms of the Field of the Received Signal

The research methods may be characterized in the following
manner.

To signal s, carrying information about the motion of a SV
or terrestrial (near-Earth) observer are additively superimposed
fluctuation interferences n. At the reception point, the effect-
ive summary signal is

y=s +. (2.1.1)

Here s = s(t, r), n = n(t, r), y = y(t, r) -- functions of co-
ordinates and time which may be considered multidimensional vec-
tors, whose components are expansion terms of these functions in-
to a series in conformity to Kotel'nikov's theorem.

As was noted-earlier, the signal is a determinant or quasi-
determinant electromagnetic field having random and regularly
variable parameters, resulting from complex nonlinear relation-
ships having specific parameters of motion:

s = s{a[r(q, q , t)], 8, t} . (2.1.2)

Interference which distorts the signal is a random, stationary
electromagnetic field.

The problem is, with respect to an additive mixture of noise
and signal in a given area of space, to define the magnitude of
the vector of definable parameters q.

The primary distinctive feature of this problem is that it is
not the parameters of the signal which function as directly defin-
able quantities, but the parameters of motion, i.e., geometric
and kinematic quantities which describe the spatial position and
motion of space or terrestrial object. As we know, the theory of
evaluations in radar technology is usually applied in evaluating /40
signal parameters; the process of defining the parameters of mot-
ion extends beyond the framework of the evaluative process and

. is seen as a problem of secondary signal processing (information).
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Another substantial feature of the problem is that signals
and noise are examined for an interval of time in which there is
significant fluctuation in the juxtaposition of emission source and
receiver. Moreover, a particularity of research is the use of
receiving systems which not only consist of discrete point anten-
nas, but also of a rather large number of elements which are dis-
cretely or continuously filling a specific area of space.

Under these conditions, it would appear that it is objectively
possible to directly define the entire set of parameters which de-
scribe the spatial position and motion of a SV or ground observer. *

As we can see from the formulation of the problem, it is
statistical in nature and may be reduced to evaluating the mag-
nitude of the parameters of the resulting distributive law of
received signals, taken as a multidimensional random quantitiy.
The received signal y is indeed a known function of several ran-
dom vectors q, q , 8, n, whose distributive laws are known. Con-
sequently, we ma3 compute the resulting distributive law of the
vector of [, as well as the conventional distributive laws of the
type w (y/q), in terms of which we may find the aposteriori dis-
tributive law of probabilities w (q/y).

Having this law at our disposal, we may make a specific eval-
uation of the parameter q. Obviously, the most preferable are
optimum evaluations, as which we customarily understand those
evaluatigns which ensure minimizing of the mean risk (or mean
losses) in defining error cost, i.e., evaluations which satisfy
the condition

7 . (q, q) w(q, q) dqdq = mil, (2.1.3)

where q and 4 -- vectors of definable parameters of motion and
its evaluation; H(q, q) -- cost of errors (function of losses);
w (q, q) -- combined probability density of quantities q and q.

We shall limit ourselves to an examination of optimum eval-
uations of the Bayes type, since in processing metric data in
most all-purpose and specialized space radar complexes there is /41
more or less accurate apriori information on the parameters of
motion. The exception are detection complexes, which we will
not discuss at this point.

We know that regardless of the sampling of error cost, the
evaluative problem comes down to the definition of the aposteriori
probability density of the known parameter. In defining the co-
ordinates of the center of gravity of an aposteriori distribution,
in particular, we obtain an optimum evaluation corresponding to
20



the loss function squared

A\ A
7(q, q) = (q- q)'.

The coordinates of the aposteriori probability density maxi-
mum correspond to the loss function of the form

q4, q)= 1 - (q, q),

where 6 -- the delta function.

In turn, the aposteriori probability density of the unknown
vector of the parameters may be represented as a :product of -

the probability density of apriori data errors w(q) and the ratio
probability of the selection of the received signal and noise
mixture £(y/q):

w(y/q) =Kw(q)(y/q) (2.1.4)
(2.1.4)

where, as we know, the ratio of sampling probability densities is
recorded in the presence of a signal and in its absence. Taking
into account the presence of undefinable parameters of motion and
non-informative signal parameters, we may write the following
expression for the ratio of probability:

f w(y, q. q.,,)w(q,)w(p) dq,,d3
(yq)(n) (2.1.5)

The constant coefficient K in formula (2.1.4) serves to norm-
alize the aposteriori distributive density. It is equal to

A W(n)

z w(q)1(y/q) dq / (2.1.6)

Beheath the inte'gral-sign in the ratio of probability appears /42
.the conventional probability distribution density of sample sel-
ection y, i.e., the distribution density of a sampling with several
fixed values of the parameters q, qp, and 8. It appears that with
fixed values of these parameters, the probability distribution
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density of the sampling will coincide with the probability density
of interference and may be expressed by the equation

,(y;'q, q., -= w,, [y -s(q, q., , (2.1.7)

where w n(n) -- the probability distribution density of interfer-
ence.

In turn, the field realization probability density which 'ap-
pears in the denominator of the formula for the ratio of pro-
bability, in the absence of a signal, is expressed as

w(n)= w,,(y). (2.1.8)

Ultimately, the formula for the ratio of probability acquires
the following form:

w, ly-s(q, qI, -)z(q")w() dqd

/(yq) I . (2.1.9)fw,,(y)

If the vector of the parameters of motion does not contain
known undefinable parameters qp, this expression is simplified
and acquires the form

wn.[y-s(q, P)l( ) d
(y/q)= w,(y)1 (2.1.10)

Therefore, having at our disposal analytic expressions for
the signal and for the function or functional of the probability
density of interference, we may define the probability density
of the sampling or realization of the field of signal-and-inter-
ference: in the presence of apriori data on the parameters of
motion, this lets us derive the conventional distribution density
of the vector of values of unknown parameters of motion and com-
pose an optimum evaluation of them.

In summarizing, we can observe that we have essentially re-
duced the task of defining the parameters of motion in space meas-
uring complexes to the generalized task of filtering radio signals.
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In this problem, the measuring means. of the complexes are seen
as a unified space-time filter, functioning in the interval of /43
constancy of definable parameters of motion and shaping the eval-
uation of the magnitudes of these parameters which is optimum
from the standpoint of the defined criteria.

A feature of generalized space-time filters, among which
may be related space, rocket, and other radio-technical complexes,
is the complex nature of the relationship between definable para-
meters of motion and field parameters of the signal, which may be
nonlinear and variable in time.

2.2. Ratio of Probability

The ratio of probability is the most substantial element of
the probability density of a received mixture of signal and noise.
The formula relationships which describe the ratio of probability
for different signal models may be derived by substituting in form- z
ula (2.1.9) analytic expressions for signals and probability den-
sities of interference, taking account of the distributive law of
vectors of non-informative parameters 8 and undefinable parameters
of motion, qp. To simplify the problem, we will limit ourselves
to the case where there are no unknown undefinable parameters,
some parameters are known, and all unknowns enter into the cate-
gory of definable quantities. In this respect, we will calculate
ratios of probability only for an isolated signal having random
initial phase, uniformly distributed in the interval from 0 to
27 : w( ) = 1/27 .

Assuming thatonly initial phase 8 is related to the number
of non-informative parameters, from formula (2.1.10) for the ratio
of probability we yield the following equation:

1(y/q)=e Ar e p y(t,r)s(t,r,P)dVdt d9, (2.2.1)

where

E rs( t , r )dtdV (2.2.2)

-- signal energy effective in volume V.

The ratio of probability is expressed with the aid of the
integral from the exponential fuinctioh, whose argument is the
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-prOduct _ of some constant quantity X the space-time integral' /44
takenin. terms of four-dimensionsal volume

z= y(t, r)s(t r, )dVdt. (2.2.3)

In carrying out calculations, we will be using a complex
form for writing the signal, interference, and the mixture of
signal and interference:

s(t, r)= A(t, r)expji(-t+fP)1, (2.2.4)

n(t, r)=N (t, r)exp(it), (2.2.5)

y(t, r) Y(t, r ()exp(i ), 2.2.6)

where A(t,r ) = A exp (- ikr) = Alt, r) exp.io(t, r) exp (- ikr);
N(t, r) = N(t,r) exp[ipi(t, r)]; Y(t, r) = A(t, r)exp i B + N(t,r).

The use of complex expressions permits us to give integral
(2.2.3) the following form:

z=jjy(t, r)s(t, r)dVdt= Re }SY(t, r) exp(iwt)A(t, r)X

'Xexp ji(wt + )l d Vdt + SY(t, r) exp(i,,t) A*(t, r) X
TV

Xexp [-i(owt )ldVdt (2.2.7)

Complex amplitudes A and Y fluctuate within a four-dimensional
volume TV rather slowly, and the duration of observations greatly
exceeds the magni'tude of the period of high-frequency oscillation;
therefore, below the sign of the time integral of the first com-
ponent of summation (2.2.7) will be found a rapid-oscillation
function approaching zero. Consequently,

z=-Re V A"exp (- i)dd. (2.2.8)
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By introducing the notations /45

Z=-2 7, Y(t, r)A*(t, r)dVdt , (2.2.9)

cosO= ReSSY(t, r)A*(t, r)dVdtiZ , (2.2.10)
TV

sinO= Im j'Y(t, r)A*(t, r)dVdt/Z, (2.2.11)TV

the integral of (2.2.3) may be given the following form: z =
= Zcos( - e).

We ultimately derive the following relationship for the ratio
of probability:

E 2
/(Y/q) = e N exp[ cos( ) di=

=e No , 2Z , (2.2.12)

where I0 (x) -- a modified zero-order Bessel function. The inte-
gral

Z= .i Y(t,r)A*(t, r)dVdt i
2 rv (2.2.13)

is called the space-time correlation integral or the intercorrel-
ation function of the signal field and the field of the received
mixture of signal and noise.

Therefore, the procedure for deriving the optimum evaluation
of parameters of motion reduces to a definition of the space-time
correlation integral Z, and optimum filtration of the signal in-
cludes transmitting the received signal and noise mixture through
a set of correlation devices; as a reference signal, signals free
from interference are fed in (these signals are effective in the
corresponding points in space); and the summing of output effects
of all correlation devices located within the region V. In practice,
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however, we can not have at our disposal signals free of inter-
ference at the points of reception, because the formation of such
signals would require the disposition of precise values for the /46
parameters of motion, whose definition is the end purpose of the
measurements. As a consequence, there is a lack of precise apri-
ori information about the parameters of motion on the receiving
end, and only this information may actually be utilized to form
the reference signal. Consequently, the practical meaning may
only gained by using reference signals formed on the basis of
apriori data and only with some degree of accuracy corresponding
to the actually effective signal. Therefore, the space-time
correlation integral will imply

Z= J9 Y'(t, r)A .(t, radVdt (2.2.14)2 7 V (2.2.14)

in which appears a reference signal Aa(t, ra), formed in terms of
apriori data about the parameters of motion.

Integral (2.2.14) is similar in form to the correlation inte-
gral which describes the procedure of optimum filtration of radar
signals [27]. Between these integrals, however, there is a very
great distinction. The primary distinction is due to the features
of the received signal and includes the fact that if a signal hav-
ing constant parameters is used as the reference signal, in this
case we would use a signal having regularly variable parameters,
formed at reception points in terms of apriori data as the re-
ference signal.

Another distinctive feature of the space-time correlation
integral is that signal field strength does not appear in it, but
the signal's volumetric density does.

Thus, the definition of the ratio of probability for the field
of an isolated signal having a constant random phase (in terms of
the earlier given classification -- a second model signal) reduces
to the definition of the correlation integral equal to the modulus
of a quadruple integral from the product of the densities of re-
ference signal and received signal and noise mixture.

It follows from this analysis that for an isolated signal
having a zero initial phase (i.e., for a first model signal),
the ratio of probability is expressed by the formula

1(y/q) =exp (-E/No) exp (2ZfNo, (2.2.15)

26



where

SZ, e P ' Y'(t, r)A~ (t, ra)dVdt.
2 rv (2.2.16)

These relationships are derived from relationships (2.2.1) and /47
(2.2.8), if an initial signal phase 8 equal to zero is placed in
them.

Let us now cite expressions for the ratio of probability of
third and fourth model signals. From the formal standpoint, the
deduction of these relationships coincides with the deduction of
formulas for the corresponding models of radar signals [27], and
thus there is no need to derive it.

For isolated signals having random phase and amplitude, the
ratio of probabilityshas the form

1(yq) exp Z2

-E N o  No 0 E+ N 0, (2.2.17)

We have to note that here the initial signal phase is assumed
to be uniformly distributed from 0 to 2f, amplitude fluctuates
in conformity to some regular law, and its maximum value is ran-
dom and is distributed in conformity to the Rayleigh law; Z and
E are given by formulas (2.2.14) and (2.2.2), respectively.

Finally, for a signal having independently fluctuating amp-
litude and phase (fourth model signal), the ratio of probability
is expressed by the formula

I(y'q) N exp - Z i (2.2.18)
k Ek +No N, 0E k +No

where

Zr,= (t, r)A (t, r) d Vdt

TkV

E = s'(t, r)dVdt=- lAA*dVdt;

Tk V T V

Tk -- the duration of the correlation interval of fluctuations
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in amplitude and phase; k -- the number of correlation intervals

falling within the limits of the measurement interval.

Generally speaking, integration in terms of volume 
should be

done within the area of spatial correlation of 
fluctuations in

amplitude and phase, but we have done it in 
terms of the entire

area in which the elements of the receiving antennas of the

space radar complex V are located, because the 
dimensions of the

area of space correlation usually exceed the dimensions 
of the

area of arrangement of the complex's antennas.

In summation, we may note that the definition of the ratio of /48

probability reduces to the definition of 
the space-time correlation

integral of the form (2.2.14) or (2.2.16).

The correlation integral of any form may be written 
as a sum

D of two components:

Z= 17S n 1, (2.2.19)

one of which describes the result of interaction 
of the received

and reference signals, the other -- the result 
of interaction of

the reference signal and interference. The first component ,

Zs={YA A:adVdt

is called the autocorrelation function of the signal (AFS); the

second component

n Zn =i Ni dVdt

TV 

-- the intercorrelation function of the reference signal 
and in-

terference. With a strong signal, the second component is 
small

vis-a-vis the first. Therefore,

Z~Z I = A(t, r) A*(t, r,)dVdt , (2.2.20)
21 ff a (2.2.20)

TV

and the properties of the correlation integral 
may be judged in

terms of the properties of the autocorrelation 
function of the

signal of (2.2.20).
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2.3. Properties of the Autocorrelation Function of a Signal
Having Regularly Variable Parameters

The autocorrelation function of a signal having regularly vari-
able parameters does not differ substantially from an autocorrel-
ation function of a signal having constant parameters. We shall
enumerate the properties which a common for autocorrelation funct-
ions of both types.

1. The autocorrelation function is a function of apriori
values of the parameters of motion.

In expanding the expression for the instantaneous distance /49
between the point of observation and the SV, we yield from formula
(2.2.20) the following

7V gr

e-r(qa, t)]expl2ik rs(qs, t)-re(qe, ' t) I ldVdt (2.3.1)

This formula is an analytic expression of the functional re-
lationship between values of AFS and apriori values of the para-
meters of motion qsa' qea The relationship between these quan-

tities is more complex in nature than the relationship between
AFS values of a signal having constant parameters and the para-
meters of the reference signal. Below the integral sign stands
the :product of two time functions, whose parameters (amplitude
and phase) are variable and fluctuate with the passage of time.
The first is the signal received by the observe (the observer's
position is described by the vectorial quantity q ) from the SV,

whose parameters of motion are qs (all parameters qs and qe or some

of them are unknown parameters of motion). Second, or reference,
signal is shaped at the receiving point in terms of apriori data
on the parameters of SV motion. Its parameters fluctuate with
time in accordance with the law of fluctuation of distance from
observer to SV which corresponds to apriori data on the orbit and
position of the observer.

Formula (2.3.1) for the autocorrelation function of a signal
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having regularly variable parameters may be written in a somewhat
modified form. Using the notations

rs (qs, t) - re (qe, t) = r,

re(q sa , t) - re (qea, t) = ra '

r = ra + Ar, t - 2r/u gr  t'

and dropping a line in the integration variable, we derive /50

V1 . .

Henceforth, the limits of inte-
gration will be denoted as before by
the symbols VT, bearing in mind that

a, integration is implemented within the
/ limits of the space-time area of ex-

istence of the received signal. The
spatial position of this area is de-

a fined by the position of the receiving
antennas; the time position -- cor-
responds to the moments of formation
and termination of signal activity at
points of location corresponding to
elements of the antenna systems.

Fig. 2.1. Relations In preceeding formulas for auto-
between geometric quan- correlation functions, integration was
tities used in defin- carried out with respect to time and
ing the correlation space within the area occupied by the
integral. receiving antenna, while r implied the

instantaneous distance of the receiv-
ing antenna volume from the emitter. If we adopt some point C,
removed from the source by the distance rc as the origin of tie
system of coordinates in which the area of integration is given
(Fig. 2.1), we may adopt as the integration variable the quantity
rA, which is associated with the quantities rc and r by the equat-

ion

r = r - r .
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In the expression for the complex amplitude of the reference
signal there appears the instantaneous distance of the element of
an imaginary receiving antenna volume,, located at a point having
apriori coordinate values. 'If--this point is designated with the
letter ca, and the corresponding vector is given the index a,
the apriori value of the instantaneous range in the expression
for the complex amplitude of the reference signal may be written /51
as

r =r -r
a  ca Aa.

Therefore, the expression for the autocorrelation function of
the signal may be brought to the form

Z= _2 , r;-r.
rv gr

. 2 r --- exp(-2ikAr)dVdt

(2.3.3)

where A(x) = A(x) exp [i (x)-]; r -- the different in ranges from
source to elementary volumes, one of whose coordinates corresponds
to the actual position of some elementary volume of the receiving
antenna; the coordinates of the other -- to the position which
this volume iwould occupy if the antenna were placed in space in
conformity to apriori data, i.e., if the antenna center were
placed where it is situated apriori, and the "body" of the antenna
were turns about three mutually perpendicular axes at several
angles -- likewise in conformity to apriori information. In the
general case, differences in range between the mentioned element-
ary volumes may fluctuate in the course of time due to the motion
of the source. The remaining notations are given by the formulas

rc = rce (qe) - rs(qs),

r ='r (q ) -r (q ).
ca cea ea sa sa

The letters qe and q , as before, denote the parameters of motion
of the observe and t e space vehicle, and the vectors re and rs
describe the instantaneous position of the observer and SV.

The integration in formula (2.3.2) is done with respect to
a four-dimensional space-time area, within the limits of which
there appears beneath the integral sign the:product' of electro-

31



magnetic fields which differs from zero. One of these fields--

the field established by all elements of the antenna devices 
of

the space complex. Because the evaluation of the parameters of

motion, in terms of the problem's meaning, is not done over 
the /52

entire field generated by the source but only for that part 
of it

which is perceived by the receiving antennas, the amplitude 
of

the unused electromagnetic field is considered to be zero 
at all

points situated outside the receiving antennas.

The second factor of the subintegral expression is the large

number of reference signals shaped at the reception point, 
whose

parameters generally differ from the parameters of 
the received

signals due to the distinction in apriori and 
actual values of SV

coordinates and those of the reception point; as well as due to

time measurement errors due to the misalignment of time 
scales

at the emission and reception points.

In discussing one-dimensional problems of "time" filtration

of signals, the location of the assigned field of the reference

signal on the time scale, as we know, is reflected 
with a shift

with respect to the area of existence of the received signal.

In the case of space-time filtration, with a strictly formal ap-

proach, we should take into account not only the time, but 
also the

space shift in the area of assignment of the large number 
of re-

ference signals. In a physically realized filter, however, the

assigned area of the large number of reference signals coincides

with the assigned area of the large number of received signals,

because the reference signals should be shaped at all reception

points. Consequently, the space assignment areas of received and

reference signals are identical and their position coincides with

the position of the area of location of the elements of the 
an-

tenna devices. Therefore, the are of space, within whose limits

integration is done, coincides with the area of location of 
ele-

ments of the antenna devices. Integration with respect to time

will likewise be done within the limits of the existence time of

the received signal.

2. The autocorrelation function is a function of definable

corrections for apriori values of the parameters of motion.

With a small difference between the apriori and actual data,

i.e., with a fairly high accuracy of apriori data, it is possible

to use a linear approximation of instantaneous range to the SV:

r(q, t)= rOq a. )

where q ={Aqei' "''Aqei' s(i + 1)' Aqsm } -- the dif- /53
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ference between actual and apriori values of the parameters df
motion, which will likewise be called corrections for apriori
values of these parameters, and the derivatives dr/dql taken at

points corresponding to their apriori values.

Allowing for the latter relationship, the autocorrelation
function of (2.3.2) may be written as

, r q, 

(2.3.4)

Therefore, the ACF of the signal having regularly variable
parameters is a function of the vector of corrections for the
parameters of motion, whose dimension is defined by the nature of
the problem in question.

3. The maximum value of the autocorrelation function is
equal to the signal energy detected in the limits of volume V.
It is attained with the complete coincidence of apriori values of
the parameters of motion with their actual values. In propottion
to the divergence of apriori and actual values of the parameters
of motion, the magnitude of the ACF decreases.

It appears that the more accurate the apriori information is,
the less difference there is between the received and reference
signal and the greater the output effect of the qpace-time filter
approaches the magnitude

Zm x SS'(l r) A*(t, r)d Vd

equal to the sum energy of the signal perceived within the vol-
ume occupied by all elements of the antenna systems of the com-
plex. Inversely, the greater the difference between the received
and reference signals, the less the correlation integral. There-
fore;, by the magnitude of the output effect of the space-time fil-
ter we may judge the degree of distinction between apriori and
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actual values of the parameters of motion, i.e., the magnitude
of the actual values of these parameters.

By means of varying the apriori values of the parameters of /54
motion, it is possible to discover the value of these parameters
at which the autocorrelation function of the signal and thus,
the correlation integral too achieve their maximum value. It ap-
pears that the maximum ACF will be attained at values of apriori
data equal to the actual values of the parameters of motion or, in
any event, at values comparatively close to them.

Therefore, the optimum procedure for defining the parameters
of motion may be given in the following manner. To discover the
optimum evaluation of the parameters of motion, we must compute the
correlation integral (2.2.13), using existing apriori values of
the unknown parameters. Then, by varying the apriori values of
the parameters of motion, we must seek the values of apriori data
which ensure maximizing of the correlation integral. Values of
the parameters of motion found in this way will be desired eval-
uations.

The divergence of apriori qa and actual q reduces Z as com.-!i
pared to Zmax. It is primarily due to the effect of the ex-

ponential factor of the subintegral expression. Indeed, if even
the argument of the exponent is similar atlall points in the area
of integration, then for all kAr 6 2 nr , this factor will be less
than its maximum value, which is equal to one. In the overwhelm-
ing majority of cases, however, the difference in ranges Ar is not
identical for different points of the antenna and does not remain
constant during signal reception. This all brings about a re-
duction in ACF as compared to the phase coincidence of received
signal with reference; under conditions of variability of the
difference in ranges, the degree of reduction will be as great
as the magnitude of the range difference. This may be clearly
seen if we examine the reception of an unmodulated signal by a
nondirectional antenna, where the range difference Ar fluctuates
in time at a constant rate Ar = Arn + Avt. By substituting this
expression in formula (2.3.2) and assuming that signal ampli-
tude is not time-dependent, we derive the following equation for
ACF in the non-feedback mode of operation:

Z= Esin0,5kAv T

0,5 kv T (2.3.5)

where T -- signal duration.

With an increase in the product. of AVT, we detect in the ACF /55
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a series of maximums and zeroes, while the magnitude of maximums
gradually decreases. Zeroes occur when

AvT = nX

where X is wave length, n = 1,2,....

ACF will have the same properties even with a more complex
law of fluctuation in the difference of apriori and actual range,
if only the limits of fluctuation of this quantity exceed the
wave length.

4. The generalized autocorrelation function, strictly speak-
ing, has no central symmetry. Indeed, by substituting in (2.3.4)
in place of Aq. the quantity -Aq. and replacing the variables in

the formula

2 " dr
'' = t - ._ q,

we derive

- - , A;(t')

/ Z(-Aq)= 2 2 r
S, V. , (9dq ,

gr

Or( e'-+ i exp r2k Aq, dVdt' , (2.3.6)

where t2 and t3 -- moments of appearance and disappearance of sig-

nal at reception point.

Hence it follows that Z(-Aq) # Z(Aq).

But because

I" O ql < and Aqr

then for the autocorrelation function we may write the following
expression:
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'exp i2k -O r dVdt (2.3.7)

whence it follows that the autocorrelation function is an even /56
function of the vectorial argument Aq, because (2.3.7) and (2.3.4)
are moduloes of complex-conjugated quantities.

The comparison of autocorrelation functions for signals hav-
ing variable and constant parameters indicates that, in addition
to common properties, there exist several distinctions between
them.

In particular, our attention is drawn to the fact that the
second term of the argument of complex signal amplitude

2 m q r

appearing beneath the ACF integral, in the given case is not only
a function of definable parameters, but is also time-dependent;
the time-dependence, which allows for the term dr(t)/dq,, is gen-
erally non-linear in nature.

We shall suggest that the similar argument of the ACF of
a signal having constant parameters is associated with the argu-
ment of a signal by a linear relationship and is not time-depend-
ent:

1 A(tA (t - ) exp (i2.Ft) dt
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Chapter 3

EVALUATING THE ACCURACY OF SPACE MEASURING COMPLEXES

3.1. Algorithms for making Apriori Data more Accurate and
Evaluation of Accuracy of Measurements for an
Isolated Signal having Unknown Initial Phase

The fullest presentation about the accuracy of measurements
is given by the aposteriori probability density of evaluations of
the vector of the parameters of motion, which corresponds to a
given realization or sampling of the signal-and-noise mixture [18].
As we know, it is a function of the probability density of apriori
data and the intercorrelation function of the reference and re-
ceived signals;for an isolated signal having random initial phase, /57
it is equal to

/(qY) = Kw(q)exp (-E:/N) o (2ZNo) .1.1)

We can see from the formula that the relationship of the pro-
bability density as a function of the magnitude of the parameters
evaluated has a complex nonlinear nature. The distributive law
is generally different from the normal one.

But in the reception of strong signals, which ~has the most
practical value, the argument of the Bessel function in formula
(3.1.1) greatly exceeds one; an approximation of this function
may be given by the relationship

I 1(x) 'e " 2x ,

where it is clear that with large values of the argument, the
denominator will have a weak effect on the variation of the func-
tion and the exponent will have the dominant role. Therefore,
the aposteriori probability density may be written in the form of
the following product:

w(q )) K1, (q) exp (2Z,'No) exp(-- E'/NA). (3.1.2)

For small deviations of the parameters of motion from their
apriori values, the exponential indexes of formula (3.1.2) may
be expanded in a Taylor series in the neighborhood of apriori
values. In producing this expansion, we find that
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.:Z(q)-- E" (q) (q [Z- (q )

. E, (qa) (qi -- qa) + - Z (qa) -

2 2 Ij I

(3.1.3)

Here qa is the apriori value of the vector of evaluated parameters;

qai is the ith component of this vector; Zi (qa ) -- the value of

the first derivative of the ACF with respect to the i component
of the vector of evaluated parameters at point q = Zj (a) -

the value of the second derivative of the ACF with respect to the

ith and jth components at the same point.

The maximum of the correlation integral generally does not
coincide with a point corresponding to apriori data, and thus the
first derivative differs from zero.

If the difference between apriori and actual values of the /58
parameters of motion is not very great, the correlation integral
may be accurately enough approximated by three terms of the Tay-
lor series. This means that the conventional probability den-
sity of reception of a given realization is represented by a
Gaussian error curve and the distribution is normal. This case
deserves more thorough examination, since simple analytic relat-
ionships may be derived which describe the resulting accuracy of
measurements, and algorithms for defining correction factors for
apriori values of the parameters of motion.

Let us state that errors in apriori data conform to the norm-
al distributive law and the probability density is depicted by
the formula

w(q)=Cexp - (q - q)T B (q q)(3.1.4)
2 (3.1.4)

where qa -- the mathematical expectation of the vector of apriori
values of the parameters of motion; Ba -- the correlation matrix
of erros in apriori data.
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By substituting (3.1.3) and (3.1.4) into (3.1.2), we derive
the following vectorial relationship:

w(q/y)= K 2 exp (q - q,)T B (q - q

1 2. (q,) - 2Z(q,2) + ( - ,) Z'(qa)- E J)N o  No 2

+ (q - qa) Z"(q,) - E" (q,) ( -- q ) ,

(3.1.5)

which in expanded form may be rewritten thus:

w(q,1 , q 2  .. , q, /y) 12 eX -) ( - q,i) (q q )
2 I71

In -hqsr qspct ) - 2Z(qfoml q . asq
Ivo

.['1 (q , Iq0,, qz , (qj, /5

I-n-this respect, the formula for the aposteriori probability

density may be reduced to the form

W(q/y) exp - (q- q) B(q-- q) (3.1.6)

where q -- the value of the vector of parameters at which the
maximum aposteriori probability density is achieved.

Because the aposteriori distribution is symmetric, q is the
optimum evaluation corresponding to both of the earlier noted loss
functions. Consequently, the vector q may be called the vector of
precise values of the parameters of motion. The letter B designates
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the correlation matrix of resultant measurement errors. It is a
quadratic matrix, whose dimension is defined by the dimension of
the vector of definable parameters.

After carrying out the appropriate transforms, we derive the
following equations for the matrix B and vector-column q:

B-1- B-, 2 Z-(qa)--1 ,(q (Lo ' 2 (3.1.7)

2 F
A ,- 2 (q (3.1.8)

which may likewise be written as

2

No Z Ii Z8qi() II

Here Z (qa) I Iij (qa) I -- the matrix of second derivatives of
the correlation integral with respect to definable parameters of
motion (derivatives are calculated at points corresponding to /60
apriori data); Z'(q a) = aZ(qa ) 1 -- the vector-column of first

derivatives of the correlation integral with respect to definable
parameters at the same points.

Formulas (3.1.7) and (3.1.8) are algorithms of optimum fil-
tration of signals having regularly variable parameters, which
allow us to define, in terms of a given realization of the noise
and signal mixture, the magnitudes of all components of the vector
of measurable parameters of motion and to evaluate the resultant
accuracy of measurement. It is clear that correction factors for
apriori data and the correlation matrix of resultant error are
defined by the correlation integral or, more precisely, by de-
rivatives of the correlation integral with respect to the defin-
able parameters of motion. Consequently, the set of the first
and second derivative from the correlation integral contains
very complete information both about thbdesired correction fact-
ors and their accuracy.

Without a doubt, a noteworthy aspect of the formulas cited
is the possible distinct definition of correction factors for all
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definable parameters of motion. This is an interesting fact,
since the question is of the vector of corrections whose dimen-
sion exceeds one, although at the output of the optimum filter,
as a result of measurements, we obtain only one value of voltage
equal to the definable value of the autocorrelation function. It
is clear that the possible elimination of apparent indeterminacy
is hidden in the excess measuring information on one hand, and
in the use of apriori data on the other.

Let us now touch upon the properties of the correlation
matrix of resultant measurement errors (3.1.7). If we were to
call the matrix elements which are the inverse of the correlation
matrix of erros "measures of accuracy", then the meaning of
formula (3.1.7) may be expressed as follows. The measure of
accuracy of measurement results is equal to the sum of measures
of accuracy of apriori data and derived measurements. It appears
that if the accuracy of apriori data is too small, the first com-
ponents of the matrix will be similar to zero and accuracy will
be defined by the measuring system; conversely, with low accuracy
of the measuring devices, the specific gravity of the second
components will be small and the resultant accuracy will correspond
to the accuracy of apriori data.

In formulas (3.1.7) and (3.1.8) appear derivatives from the
correlation integral at the point corresponding to apriori data.
The correlation integral is a function which diminishes in pro-
portion to an increase in the difference between apriori and
actual values of the parameters of motion. Therefore, in pro- /61
portion to the increase in the difference of vectors q a and q

there is a growth in the first and decrease in the second deriv-
ative of the correlation integral. This corresponds to an increase
of the desired correction and a reduction of measurement accuracy.
Conversely, in proportion to the approximation of the vectors
mentioned, there is an increase in the second derivative and an
increase in measurement accuracy. The maximum accuracy will be
achieved if apriori data are taken as equal to the actual values
of the measurable parameters.

Therefore, if in matrix (3.1.7), instead of values of second
derivatives of ACF at the point corresponding to apriori data, we
substitute the values of the second derivatives corresponding to
the actual values of definable parameters, the derived matrix will
allow us to judge the ultimately attainable or, as it is customar-
ily called, the potential accuracy of measurements. ACF derivat-
ives calculated at points corresponding to actual data which, as
we know, coincide with the coordinates of the maximum correlation
integral, will be designated with the symbol Z. (0), implying

under the argument of the integral the difference of apriori and
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actual data.

It follows from formula (3.1.7) that the correlation matrix
of measurements describing the potential accuracy of measurements
has the form

B- = B' - Z"(0)/N\ = B' - E"/N/o, (3.1.9)

where Z"(0) -- the maximum value of the second derivative of the
signal autocorrelation function.

The aforesaid indicates the advisability of using automatic
parameter measurement systems having feedback with apriori data,
i.e., systems in which, as measuring information is accumulated,
apriori data are continuously updated.

It is also useful to focus our attention on the fact that,
in the event signals having regularly variable parameters are being
received, the most complete information about evaluable parameters
of motion is contained in the correlation integral or in some
function of it. In view of this, the data which are most import-
ant as concerns the definition of corrections for apriori data
and evaluation of their accuracy are contained in the first and
second derivatives of the correlation integral.

3.2. Algorithms of Optimum Processing of Signals Having /62
Fluctuating Parameters

Up until this point, we have discussed the reception of one
signal having a random initial phase, whose correlation integral
has the form of (2.2.14). If a signal having random phase and
amplitude or a signal having fluctuating phse or fluctuating amp-
litude and phase is implemented, the signal processing procedure
becomes complicated.

The ratio of probability for a signal having regularly vari-
able amplitude and fluctuating phase is expressed by the formula

rl exp N(3.2.1)

which assigns the definition of the weighted product of values of
the Bessel function from correlation integrals calculated for
each coherence interval (correlation interval). In practice, how-
ever, instead of calculating the ratio of probability, it is pre-
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ferable to calculate the logarithm from it. The replacement of the
given function by the logarithmic one is admissible in view of the
monotony of the latter. In switching to the logarithm we can avoid
calculating the product, by replacing it with the summation:

In 1 1,I (2Zj/NO) - Ek,/N. (3.2.2)

The calculation of such a summation is not difficult, since
the operation of defining the logarithm of the Bessel function may
be placed on a nonlinear element having the appropriate character-
istics. We may also note that for strong and weak signals, the
Bessel function logarithm is approximated by linear and quadratic
functions, respectively

InI,,(x) x, x ; Inl/,,(x) x 2 4; x <1, I

attesting to the possible replacement of the nonlinear operation
by a linear or quadratic detection. Therefore, if the specific-
ations of the definition of the correlation integral are not borne
in mind, we may consider that the signal processing procedure for
a signal having regularly variable parameters formally coincides
with the procedure for processing signals having constant para-
meters.

For a signal having fluctuating amplitude and phase (indep- /63
endent fluctuations), the ratio of probability is equal to

- +N, x N  N E, (3.2.3)

and it is clear that in the given instance, we may switch to the
calculation of the logarithm of the ratio of probability

.In- I z V No
N..o N-f- Io+Ek (3.2.4)

Therefore, the procedure for defining the ratio of probability
also reduces to a weighted summation of voltage at the output of
a quadratic detector which follows the correlation circuit de-
signed to define Zk.

The algorithms (3.2.2) and (3.2.4) guarantee the optimum
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processing of a signal upon its detection and during the measurement
process. But if we have rather reliable apriori data, the indi-
cated algorithms should be transformed to permit us to directly
judge the magnitude of corrections and measurement accuracy, i.e.,
it is desirable to derive from them algorithms similar to (3.1.7)
and (3.1.8). We shall cite these algorithms.

It appears that if the amplitude of a signal does not fluc-
tuate and the ratio of probability is expressed by formula (3.2.1),
then with the reception of a strong signal the same laws will be
in effect as those which occur in the reception of an isolated sig-
nal having a constant initial phase, whose magnitude is random.
Therefore, in this case, to define corrections and evaluate the
accuracy, we may use algorithms (3.1.7) and (3.1.8), by substitut-
ing in place of the derivatives of the correlation integral and
energy

Z(q.)- , ) q)- EZi'(jn ) ,)

of the summation of derivatives from the correlation integrals
and energy, taken within the signal coherence interval

k r

(3.2.5)

To derive algorithms for processing a signal having fluct- /64
uating phase and amplitude, we will use a method similar to that
used in section 3.1.

The aposteriori probability distribution density of para-
meters of motion for independent fluctuations in phase and amp-
litude of a signal may be reduced to the following form:

. (q.!!) A w( q)(y~)= K'z¢(q) exp [In I(y/q) --

= Kexp 2 (qi - q.,) B (qj - qq ) X

Z2 " No
X exp - N In

o k No +E k No+ E
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As before, let us assume that the actual values of the para-
meters of motion are rather similar to the apriori known values of
these parameters. In this case, we may consider that Ek(q)Z Ek (qa)

and the square of the ACF is represented by a Taylor series:

Z' (4) Z' (q0) -- 2Z,(q,) I Z ,(q) (q, - qj) +

(,z ) [z,;, (qa ) + Zk(q,) Z i,(q) (q, -- q,.)(qj - q4a) -*

(3.2.7)

Therefore, for the aposteriori probability density of defin-
able parameters of motion we derive the expression

w(q/y) = const exp - (qi - q.,) B(q-q) -

N _ No-f-E Zk(q) Z'(q)(q' q,) L
(3.2.8)

where

B-' B- 2 N [Z,(qa)Zj(qa)
a/ NO k No+E" +

+ Z (q0 ) Z,/ (q.)]
(3.2.9)

or in matrix form

B- = B 1
a N o k No + Ek

+ Zk(q.) Z (q.)}
(3.2.10)

This distributive density may, ultimately, be reduced to the form /65

S(q) = const exp -) (q -qi)B '(q-q) (3.2.11)

where
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No h No E (3.2.12)

or in matrix form

Sqqa 4(q,) BZ (q). (3.2.13)

No -, N,+ E,-k__ N0-~ N--E -

Let us note that whereas for an isolated signal the apost-
eriori distribution is Gaussian only for a: strong" signal whose
energy exceeds the spectral density of noise, for a signal having
fluctuating phase and amplitude, the distribution is Gaussian both
for large and for small values of the signal-to-noise ratio.

Let us discuss the typical features of the derived algorithms.
Similarly to what we encountered in discussing the process of pro-
cessing isolated signal, the basic constituent part of these algo-
rithms is the correlation integral and its derivatives with re-
spect to definable parameters of motion. But, since for the iso-
lated signal it was assumed that its phase does not fluctuate,
the duration of the definition of the correlation integral was
made equal to that of the measurements. More generally, when
the phase of a signal fluctuates, the duration of definition of
the correlation integral must be made equal to the duration of the
phase correlation interval. Moreover, we likewise have to some-
what modify the prodedure for defining corrections and the error
correlation matrix. An examination of formulas in (3.2.13) in-
dicates that the correction for apriori value of the vector of the
orbital parameters is herewith defined by the weighted summation
of corrections calculated within each correlation interval of
fluctuations of phase in conformity with the formula

N,

which is a part of the similar formula (3.1.8) for an isolated
signal. This :relationship is identical to the formula for the
correction which is derived using the method of least squares. /66
The weight coefficients used in summation of corrections for dis-
crete correlation intervals are the ratios

Z,(qai(No + E )= Z,,(q)(N o +Ek),1 (3.2.14)
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whose numerical values are included between zero and one.

The values of the autocorrelation functions are a function
of the differences between apriori and actual values of the para-
meters of motion. Since, in conformity to the customary assump-
tion of the differences of q-qa are small, the spectral density

of noise and the signal energy dre-virtually independent of these
differences. Therefore, the magnitude of the weight coefficient
in the given correlation interval is as small as is large the mag-
nitude of the aforementioned difference. Such nature of the re-
lationship of weight coefficients as functions of the differences
between apriori and actual values of the parameters of motion ex-
plains the absence of a factor before- the summation sign which is
inversely proportional to the number of correlation intervals
confined within the duration of the measurement session. This
type of factor, at first glance, seems necessary, since without
it the resultant correction would be equal to the sum of errors
in discrete correlation intervals. The role of this factor is
essentially played by the aforementioned weight coefficients.

Thus, the values of the weight coefficients are functions of
the difference between actual and apriori values of the parameters
of motion. Moreover, as we can see from formula (3.2.14), they are
functions of the signal-to-noise ratio in the correlation inter-
val (i.e., of the ratio of signal energy in the correlation in-
terval to the spectral density of noise), while this relation-
ship is as strong as this ratio is small. Indeed, when Ek >> NO,

the weight coefficient is equal merely to the normalized value of
the ACF Zk(qa)/E k = Zkl(qa). If, however, the signal-to-noise

ratio is small, the weight coefficient is equal to the product
of this same normalized ACF value multiplijd by the signal-to-
noise ratio

1 1
N Zka ) = N EkZkn a)0 0

Let us now examine the distinctive features of the correl-
ation matrix. As with an isolated signal having initial phase
which is invariable during the observation session and regularly /67
variable amplitude, in this case, the matrix opposite to the error
correlation matrix of measurements is equal to the sum of matrices,
one of which is opposite the apriori data error correlation matrix,
and one which describes the accuracy properties of the measuring
complex itself. But in contrast to the previously discussed case,
the accuracy properties of the complex are described by the sum of
magnitudes calculated within discrete correlation intervals of

phase fluctuation. In turn, the aforementioned components, cal-
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culated within the correlation intervals, consists of two compon-
ents. The first of these

Zza) Iz(q)

is close in structure and magnitude to the component which we en-
counted in examining a signal having constant initial phase and
regularly variable amplitude, and differs from it only in its
weight coefficient, which is precisely equal to the weight coef-
ficient which appears in the correction formula (3.2.13). The
second component was previously missing. It is proportional to
the product of the first derivatives of the ACF

IZ (q z)j (ZV( Tl

No + Ek No

Our interest is drawn to the correlation matrix of errors
describing the potential accuracy of the complex. The highest
accuracy is attained, as we know, at qa = q. Consequently, after
completing the process of updating the parameters of motion, the
measurement accuracy will be reflected by a correlation matrix
satisfying the equation

B-1 =B-'- 2 Z" (0)
a Ao_+ E (A ) (3.2.15)

The second component of the formula describes the accuracy
increment attained as a result of using the means of the measur-
ing complex. It appears that the complex should only be put into
operation if this increment is sufficiently great in comparison
with the first term of formula (3.2.15). The primary constituent
part of the second term, as for a signal having invariable initial
phase and regularly variable amplitude, is the maximum value of
the second derivative of the ACF.

A measure of the potential accuracy of the measuring system /68
proper, described by the second term of formula (3.2.15), is de-
fined by means of a weighted summation of measures of potential
accuracy of measurements within discrete intervals of phase fluc-
tuation correlation. The magnitude of the weight coefficients
approaches one with low levels of noise and is close to the mag-
nitudes of the signal-to-noise ratios in correlation intervals --
with high interference levels.
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Hence it follows that with large signal-to-noise ratios in
the phase fluctuation correlation interval, the increment of
accuracy of data on the parameters of motion, owing to the oper-
ation of the complex means, is proportional to the first power of
these ratios; at small values of the ratio of signal energy to
the spectral density of noise, it is proportional to the square
of those ratios. Indeed, at large ratios of signal-to-noise, the
increment of accuracy described by the second term of the cor-
relation matrix is proportional to the ratio of the second deriv-
ative of the ACF to the spectral density of noise. The second
derivative may be written as the product of signal energy times
the normalized value of the second derivative of the ACF:

t E E(O)
k k

Consequently,

v ) =2 Z (0).
SNo ijkk N ie

~B analogy with this, for small ratios of signal-to-noise we get

A1-= 2 V( E ' , (0).

Hence we can see the amount of gain in accuracy produced by
increasing the duration of the signal phase fluctuation correlat-
ion interval. It is likewise useful to note that if signal energy
in the phase fluctuation correlation interval greatly exceeds the
spectral density of interference, then to evaluate the potential
accuracy we may use the maximum value of the second derivative of
the ACF, calculated in the time interval equal to the duration of
the entire measurement session, T = Tk, since in this case /69

k

Z (0)= TZ k

The formula for the correlation matrix of resultant measure-
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ment error (3.2.15) allows us to judge the nature of the relation-
ship between the accuracy and length of the measurement process.
With rather strong signals, the measure of system accuracy in-
creases in proportion to time. This signifies that when one para-
meter is measured, in proportion to the increase in time, the
quantity inversely proportional to error dispersion is equal to
the sum of quantities inversely proportional to the dispersions of
measurements in the initial and additional segments of time. With
weak signals, the increase in accuracy is retarded: the increment
in accuracy is proportional not only to the second derivative of
the ACF, but also to the signal-to-noise ratio in the added time
interval.

A specific representation on the structure of an optimum sig-
nal filtration system in a space complex for trajectory measure-
ments is illustrated in Fig. 3.1. This figure cites a consolidated/70

functional schematic of
a system implementing
the algorithms of opti-

nt einn mum processing of iso-
lated signals having
random initial phase

Timer iTrans- 'e lemise (3.1.7) and (3.1.8).

The system contains
, - signal processing devices

RVG 6- I in addition to the de-
vices required for shap-
ing and recording the

z-- fields: timer, trans-
mitter, antenna, and

Ba receiver. The basic
om uer re c elements of these de-

q .h esp q vices are correlation
circuits, which ensure

a uBki a the computation of the
first and second deriv-

Fig. 3.1. Functional Schematic of Opti- atives of the correlat-
mum Signal Filtration System in Space ion integrals, reference
Measuring Complex. voltage generators (RVGi )

and a computer for pre-
dicting the values of range and derivatives from predicted values
of range with respect to definable parameters of motion. This
machine controls the work of the reference signal generator and
shapes the information needed for the operation of the correlation
circuits. The circuits which calculate corrections for definable
parameters of motion and correlation matrices are also integral
parts of this machine. Coupled circuits in Fig. 3.1 are shown by
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circuits through which circulate data on vectorial quantities.. In
the same figure is shown a processing system for signals tapped
from the one-element antenna. If the measuring complex contains
several systems arranged in space, each of them must be provided
with its own processing system like the system illustrated in Fig.
3.1. Some elements may be common for the entire complex. They
are indicated in the figure by circuits having thick lines. It
goes without saying, the functional schematic of Fig. 3.1 is il-
lustrative in nature and does not reflect the particularities of
technical implementation of the processing system.

Let us note in conclusion that in computing the derivatives
of signal energy with respect to the definable parameters of mot-
ion, which appear in formulas 3.1 and 3.2, there are usually no
problems encountered. These derivatives are expressed by the
formulas

E AAJ d-'1 dt,
dq, 2 A A+

I ,2r dr drE -A - - [A -A- (A)'] dVd

As pertains to partial derivatives from the autocorrelation
function, we should examine the methods for computing them in
greater detail.

3.3. Derivatives of Autocorrelation Functions of Signals /71
Having Regularly Variable Parameters

Differentiation of the autocorrelation function of a signal
having rnadom initial phase is associated with some problems. The
cause of these problems is the fact that the derivative of the
modulus of a complex function is not equal to the modulus of its
derivative. Therefore, prior to differentiating we must calcul-
ate the modulus, and only the thus derived weighted function may
be subjected to differentiation. To simplify computations, let
us introduce the following notations:

Zt 2
2 VT Vr 

(3.3.1)
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where

I= A -i' t- A(t) cos ( - r)dVdt (3.3.2)

,= A (SAt) 2A r (3.3.3)

S(-r)=- + - - (t) - 2k Ar; Ar= Ar(q,,, q) (3.3.4)
Sgr (3.3.4)

Taking these notations in account, the formula for the auto-
correlation function is

-2 (3.3.5)

Let us differentiate the derived weighted function with re-
spect to qai and q j:

Z I I Id 12 12 i
Z =-2 1/ -/I2 ' (3.3.6)

S1 1 (II 2

-(3.3.7) /72

Let us compute the first and second derivatives of the cor-
responding integrals and values of these derivatives at a point
where the apriori and actual values of definable parameters of
motion are equal to each other, i.e., they correspond to the zero
value of corrections for unknown parameters or zero value of range



differences.

Let us mention that the variables herewith are the apriori
values of the parameters of motion, which under other equal con-
ditions define the clearly defined (in formulas 3.3.3 and 3.3.4)
magnitude of difference in apriori and actual range: r = r - ra'

In the formulas derived in differentiation, there appear
partial derivatives of apriori ranges with respect to the apriori
values of the parameters of motion r a/q ai.. Henceforth these

derivatives will be denoted by the symbol 8r/Dqi.

Partial derivatives of the following form will also be en-
countered in the formulas

O A , (t -42 ,r/v . .

Ora

It is easy to ascertain that they are associated with the
derivatives of these same quantities with respect to time by the
equations

dA, (t 2Ar/ __ A, (t4 '2 !r/) O(t-2Ar ) Or"
Or0  d(t --2 hr/vj Or0  0 I.

Let us introduce the notations:

OA,, (t+ 2 r/vi . O(t-2Ar/r) _ 2-
0 (t-2 r/ Or, Vgr

In view of this we may write:

2 _r 2_r
Ili A= O A ( r) dt -A (t)cs,(r)dV

gr vr gr

-A (t+ 2r )A (t)sin (r)(Ar)dVdt, (3.3.8)
T gr
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2 dr2Ar
12i .* T q A (t-+ - A (1) sin b (Ar) dVdt +

gr v gr

+ f A (t -,- 2Ar A(t)!I(Ar)cos B(Ar) dVdt, (3.3.9) /73
VT gr

1" 4 f o j(r dr ( 2 Ar
gr dq qj, -V g--r

XA (t) cos p (Ar)dVdt -

S(Ar) + (Ar)
ogr v q 2 )q

X A;( - ) sin (Ar)A (t) dVdt_

S A (t+ '~ A (t) ) (Ar) (Arc) (r) d t -
v ' gr

- A t+ A (t) , (Ar) sin (r)dVdt+

2 " r  2 Ar+ 29, 02rAdAdq A gr A (t) cos '(Ar)d Vdt,
gr Vgr

(3.3.10)
4 O Ordr A" 2 Ar

vg r q O gr/

XA (t) sin 4 (Ar) dVdt+

grv Oq

XAg; ( t+4- 2 Ar'A o /
S A; (t 2 r )A(t) cos (Ar) dV dt +

+S A t -A (t) ;(.Ar)cos ) (Ar)dVdt -
Sgr
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+- A (t+ 2Ar A (t)sin ( r) ) si(r)dVdt/74
,yv r %r

A t+ )A(t)sin (r)dVdt,
'grv T qVg r /

(3O .3.11)

( (t 2Ar\ .2 dr 2k dr

-r ?gr  -q, Oq- '
* (Ar)- 4 dr Or / Ar)

Vgr Oqj Oqj Vr/

2 d0-r 2Ar r gr (3.3.12)Vgr -O?, t- -- 2k Oq3Oq2

gr  q qj +2qgr _.

By substituting these equations in the expression for the
second derivative of the ACF. of the signal field-;-we may derive
a general formuli kfor the second' derivative of the'.ACF which de-
:scribesthe accuracy of.'measurements at any relationships between
the apriori and actual values of the parameters of motion. This
formula, however, is extremely unwieldy, and thus we shall only
cite the formula for the maximum value of the derivative. To cal-
culate the maximum value of the second derivative of the ACF, let
us first define the values of the integrals I1 and 12 and their

derivatives, and likewise the derivatives of phase i where qa

= q, i.e., at points where Aq = 0:

I,(0)= S.A2(t) d V dt=2!' (3.3.13)
VT

12(0)=0, 4 (0) = 0; (3.3.14)
2 dr dr

1-)= ; (t)-2k- , (3.3.15)

4 dr dr

2- 2 ,- f'(t)4- k 1, (3.3.16)
2 2 r gr dqJ

-1(0) 2 gr -r A'A dVdt, (3.3.17)
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i (0) = S ' (0) A2 d V t;
VT

Sd (0) 2r AA' d V dt•2 Oqi Oqj

gr
VT

S, (0) ,; (0) A2 dVdt, . .(3.3.19)

, 2 dr dr2;g (0) = -(0) I (0) AA'dVdt-
Rgr f [d9qi d (0

-.f Su o  (0) A 2 dVd t . (3.3.20)
V T

We may now write relationships for the maximum values of the
second derivatives of the autocorrelation function. By substitut-
ing the appropriate values of the integrals and their derivatives
into (3.3.7), we derive

. .... .... -' (0) 1
2Z"' (0) = 'l (0) + 21 (0)1

2 0 r AA'dVdt--

4 1 dr Or
Sf dr AA"dVdt-

,9,j? dqid dq1
--- .j (0) (o0) A 2 dVdt +

V 7

S(0) A2dVdt (0)A2dVdt (3.3.21)"r ' J (3.3.21)
V56T
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2dr d r

~0 AA d Vdt - /76

g , dq-/2 Or Or

+ 7 -T (t) A2 dV dt -/
A4g (t)2dVdt--

-dq Oj

k dr r

gr VT

-2k2$jf Or Or A'dVdt
V T q1  Oq1 AV

SI f or [k-- (t) ]A2dVdt}

v t gr

Sgr A2dVdt . (3.3.22)

Finally, there is a certain amount of interest in such form
of presentation of secondary derivatives:

Z; (0)= - dr AA;dVdt-
v dJq, dq
gr V T

2 or Or+ 2 - r AA"dVdt--
gr V T 0q

dr Or
-2 - jk2 A'dVdt±

-VT q

VIT

q T q A2dVdt) , (3.3.23)
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where kE = k + t/ugr.

If the initial phase of signal field oscillation carriers is
known, the integral 12(0) and its derivatives would be equal to /77

zero and the expression for the maximum value of the second deri-
vative of the ACF would acquire the form

Z" (0)= 1 d2 r AA' dVdt d-
v V dqdq,

,+2 ojdr d Vdr AA"

v T" gr (3.3.24)

But, as we know, in space measuring complexes we use ultra-
short waves and therefore, stabilization and definition of the
initial phase of oscillation carriers is coupled with enormous
technical problems. Moreover, the use of information contained
in the phase of oscillation carriers, due to the heterogeneity of
the results of phase measurements, is only possible in practice
with the use of differential-range or angular measurements. There-
fore, in examining the possibilities of space measuring complexes,
we generally must base our calculations on formulas (3.3.21) and
(3.3.22).

The signal envelope A(t) in practice usually possesses sym-
metry with respect to some moment in time. Thus, its first
derivative is an odd function with respect to this moment in time
and the first integral of formula (3.3.23) is equal to zero. By
allowing for this, we will later, for most cases, be using form-
ulas in which the term from the first derivative of signal amp-
litude will not be shown under the integral sign.

Prior to switching over to a detailed analysis of formulas
for the maximum values of the secondary derivatives of the ACF,
let us consider the structure of these formulas and some general
properties of them.

It can be ascertained that the first two terms of formula
(3.3.23) reflect information contained in the signal envelope;
the third term -- allows for information supplied by the dif-
ference in phases of oscillation carriers, and likewise the in-
formation due to carrier phase modulation. In contrast to the
first three terms, which describe the useful effect of field ut-
ilization, the fourth term allows for information losses occur-
ring as a result of missing data on initial signal phase.
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Analysis of formula (3.3.22) sheds some additional light on
factors of which the secondary derivatives of the ACF are functions.
Here may be emphasized those terms initiated by phase modulation /78
of the emitted signal, and terms occurring as a result of phase
fluctuation governed by SV motion. The third and fourth terms of
formula (3.3.22) are related to the first group; the components of
the subsequent term, which are functions of phase derivatives, are
also related to this group. The fifth term and the components of
the sixth term, which contains the wave number, are related to the
second group.

All the terms of the formula describing the second derivative
may be divided into groups by the following feature as well. In
front of the terms of the first group stands the number 1/u2 ; the

terms of the second group are proportional to k/ugr ; and the terms

of the third group contain a coefficient equal to the square of the
wave number k. It appears that the coefficients standing before
terms of the first group are distinguished by the least; and before
the terms of the third group -- by the greatest numerical values.
If the integrals which make up the terms of the corresponding
groups are similar to each other, then terms of the latter group,
which contain the square of the wave number, will carry the most
weight.

From the preceeding statement, it is clear that formulas
(3.3.22) and (3.3.23), in conjunction with the appropriate form-
ulas from sections 3.1 and 3.2, describe the potential accuracy of
measurements. In analyzing these formulas, we must investigate
the semantic content of this concept in greater detail.

We only gave a general definition of this concept before.
We agreed that potential measurement accuracy would imply the
highest accuracy obtained in measurements using a given signal
against the background of interference, which is likewise con-
sidered given by the measuring system, which introduces no errors
into the measurement results. In examining the composition of
formulas (3.3.22) and (3.3.23), we may conclude that this notion
characterizes the accuracy which may be achieved with complete
utilization of signal resources. Formulas (3.3.22) and (3.3.23)
give the most general and complete picture about information
provided by all signal parameters with their efficient processing,
regardless of the weight relationships of the data contained in
discrete signal parameters under certain concrete conditions.

The potential accuracy which is described by general inform-
ation resources of the signal electromagnetic field in a given
area of space during a given interval of time we shall call the
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potential accuracy of measurements.

It is well known, however, that different field parameters /79
may have different information-metric capability according to the
selection of the wave range, form, law of modulation, and geo-
metric quantities on which the given parameters provide inform-
ation. On the other hand, as experience has shown, systems which
differ in the parameters used differ considerably in their struc-
tural and technical characteristics. Systems are usually designed
and used which have been calculated to obtain data in terms of
one signal parameter. Thus, in addition to the idea of potential
accuracy of measurement, which describes the information resources
of the field as a whole, we should also use similar concepts for
the discrete parameters of the field, as well as for different
field parameters with respect to the measurement of geometric
and kinematic quantities used to reflect SV motion. Therefore,
henceforth, in addition to the term "potential accuracy of mea-
surements" we will use such terms as "potential accuracy of phased
range-finding methods of measurement for Cartesian topocentric
coordinates", "potential accuracy of phased goniometer methods for
defining Keplerian orbital elements" and the like.

As we know, these type of terms are being used in practice.
It appears that the use of such terms does not eliminate the pos-
sible use of a more general term -- potential accuracy of measure-
ments, since the latter not only allows the evaluation of field
resources as a whole, but moreover opens ways for exposing inform-
ation relationships and connections between discrete signal para-
meters.

Formulas (3.3.22) and (3.3.23) describe the limiting resources
of electronic methods of measuring the parameters of motion, i.e.,
those accuracy boundaries beyond which it is impossible to pass
without increasing signal energy, reducing the level of inter-
ference, or increasing the dimensions of antennaj. sysstems. No
improvement of signal processing methods, within the framework of
presentations used, will allow us to achieved a reduction in error
as compared with those values which are defined by the formulas
in question. Consequently, the following feature of formulas for
maximum values of the secondary derivatives of the ACF is of inter-
est.

Of those geometric quantities reflecting the conditions and
methods of measurement, only instantaneous range to the SV is /80
presented here, or more precisely, its derivatives with respect
to the definable parameters of motion. Neither the velocity
characteristics of motion nor the goniometer coordinates of the
objects are clearly presented in the formulas, although among
the definable parameters of motion we usually include both velo-
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city and goniometer quantities. The reason for the absence of
data on the velocity and angles in these formulas is associated
with the fact that the primary source of data on the parameters
of motion is the signal time lag proportional to the distance
between the SV and the point of observation.

This does not imply, generally speaking, that information on
the velocity and angular coordinates is not taken into account by
the formulas in question. In reality, it is reflected in them
tacitly. The consideration of speed data is done by the deriv-
atives of range themselves, which function as time-functions and
are integrated with respect to time. Angular information on SV
location is included in values of the subintegral expression which
are subjected to spatial integration, which is a function of the
point coordinates of the antenna field and consequently, the an-
gular coordinates of the object.

Therefore, the general formula relationships which describe
the potential accuracy of measurements tacitly take into account
no only information about ranges to the SV, but also information
about the angular coordinates and velocities of SV motion.

The problem of reflecting angular and velocity information
will be investigated in Chapter 6 in greater detail.

3.4. Vectorial Form of Writing the Maximum Values of the
Second Derivatives of the Autocorrelation Function

The maximum values of the second derivatives of the ACF
may be written in a more compact form, if we use vector symbols.

Let us introduce the vector-line of partial derivatives of
range with respect to definable parameters of motion:

o r dr Or Or dr Or dr
dq dq, oq2 dq dq, oq.-, aq (3.4.1)

The product matrix of partial derivatives of range with re- /81
spect to definable parameters of motion in the given notations
may be written as follows:

-Or Oo= r 1 or

Consequently, the matrix of maximum values of the second
derivatives of the ACF acquires the form
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2 dr T drS()= AA" d Vdt -
gr ,vr

[01q q,

V T
±I dr

± . qI kAe Vdt k A-dVdt .
V V T

(3.4.3)

Let us further use the vectorial form of writing the in-
stantaneous range from the point of observation to the space ve-
hicle.

We will introduce the topocentric system of coordinates which
in orientation may be inertial, Greenwich, meridional or any other.
In this system, SV location will be represented as a radius-vector

X I X2 X 2 X 3 T

and the distance from the observation point to the SV -- by the
length of this radius-vector, which is equal to

The vector-column of partial derivatives of range with re-
spect to the parameters of motion has the following form:

or T x 1 Ox
-[x x"12 _ x'- (3.4.5)

Consequently, the product matrix of partial derivatives of
range is represented by the formula

)r Or Fdr dr r I d XO Ox

q - xxX (3.4.6)
dqidq d q r2 ).J X Q

Therefore, the matrix of maximum values of the secondary
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derivatives of the ACF with respect to definable parameters of

motion is equal to

Z (0)= 2  TL1 xx' AA" -2e2 dVdt+
VT gr

S0j xkeA 2 dVdt xT kX
+ EdtJkj, r Jq

V 7' V 7'

X A " dVdt .

(3.4.7)

Let us note that this form of writing the second derivative

of the ACF is valid only if SV motion is given in a topocentric

system of coordinates.

Formula (3.4.7) must be appropriately transformed if the

origin of the system of coordinates is transposed 
to a point in

space which does not coincide with the point 
of observation.
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Chapter 4

ANALYSIS OF POTENTIAL ACCURACY OF DIFFERENT METHODS OF MEASURING
THE PARAMETERS OF MOTION

4.1. In Place of an Introduction

In this chapter we are planning to give an analysis of the
formulas cited in section 3.3 for the maximum values of the sec-
ond derivatives of the ACF with respect to definable parameters of
motion. This analysis should begin with a discussion of a most
simple application of these formulas -- the evaluation of potent-
ial accuracy of measuring the parameters of motion of a uniformly
moving object. To simplify the formulas and avoid spatial inte-
gration which in this case is of no theoretical value, we will
assume that the signal is received by a one-element nondirectional
antenna. Let us assume, moreover, that the function which defines
the law of signal phase modulation is selected so its first deriv-
ative is an odd function of time. Finally, let us consider that /83
the amplitude of the received signal is an even function of time,
and the inception of time reference coincides with the location
of the axis of symmetry of the received signal envelope.

We will show that in the particular instance of evaluation
of initial phase to an object and the constant rate of motion,
relationships (3.3.22) and (3.3.23) are reduced to derivatives of
formulas of Woodword's indeterminate form known from the liter-
ature. Indeed, by assuming that

r = r + vt (4.1.1)

and taking into account that
I I

Dr/Drn = 1; r = -2 /u gr - 2k = - 2ke;

2r/
Dr/9v = t; 2r/ar av = 0; iv = -2ket, (4.1.2)

we find for the maximum value of the second derivative of the ACF
with respect to initial range the following expression:

z; (0) = AA" dt-2 ke4 2 dt+

6- 2 -2
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12 2

+ A2d

The last two terms of this formula describe information
obtained as a result of amplitude and phase modulation, the first
relfecting data on velocity due to the Doppler shift of oscillat-
ion carrier frequency. It is easy to detect that, all other things
being equal, the first term greatly exceeds in magnitude the two
others. Thus, most often the measurement of velocity is done at
the oscillation carrier frequency, and in this case the maximum
value of the second derivative of the ACF with respect to velo-
city is expressed by, the formula [131

Ti2

Z".(0) -- 2k2  2A2. (4.1.6)
-1/2

Let us no move to the calculation of a mixed second deriv -
ative of the ACF. Taking into account assumptions on the even
parity of the function A(t) and the odd parity of the first deriv-
ative of the modulating function, for the maximum value of the
second mixed derivative we find the equation

T/2

4k 2

Z" (0) tT' A2 dt.
n V- ' (4.1.7)

gr -T12

Therefore, we are convinced that formulas (4.1.5), (4.1.6), /85
and (4.1.7) are derived from the common formula (3.3.22), if it
is used to evaluate constant quantities -- initial range and
velocity of objects.

4.2. Accuracy of Phase and Pulse Telemetry Methods

The second stage of analysis of accuracy should be dedicated
to an examination of the features of phase and pulse telemetry
methods which are related to a number of methods which have re-
ceived the widest use in space measuring complexes. In phase
measurements, information on parameters of motion is included in
the phase shift of the envelope of the received signal with re-
spect to the envelope of the reference oscillation. The pulse
method of measurements is based on defining the time lag of the

66



received pulse with respect to the emitted pulse. In implementing
the phase method, the initial definition and stabilization of
instrument lag is ensured, which is tantamount to defining and
stabilizing the initial phase of the envelope. A similar operation
is likewise performed in measurements with pulse methods.

Formulas for evaluation of potential accuracy of phase tele-
metry methods for defining the parameters of motion may easily be
derived from general relationships (3.3.22) and (3.3.23). In
this regard, we must take into account that phase telemetry methods
are mainly implemented at modulation frequencies and consequently,
for measurements we use signals whose amplitude fluctuates in time
in conformity to the harmonic law

A()=A,,,(I +m cos t). (4.2.1)

For the!sake of simplicity, we will assume that signal phase
modulation is absent.

Information included in the phase of carrier oscillation is
not usually used in phase telemetry systems, and thus in evaluat-
ing the accuracy of measurements it is sufficient to bear in mind
only the second term of formula (3.3.22). As a result, we derive
the following expression for the maximum value of the second deriv-
ative'of the ACF:

- (2 dr Odr A
zii (0)- - A dV dt.

Saqi q (4.2.2)

If signal amplitude fluctuates little during a measurement /86
session, the second derivative of the ACF is reduced to the form

1n1' 2A2 dr drZ' (0) - _ OdV O dt(4.2.3)
Sv2 dq, dq (4.2.3)

gr q

In its structure, the maximum value of the second derivative
is similar to the expression for the maximum value of the second
derivative of the ACF of an unmodulated carrier having a known
initial phase

Z" (0) =-2k2 or r A2dVdt,
Soq oqj (4.2.4)
VT

which is completely natural.

The last factor of expression (4.2.3) -- the space-time
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integral of the product of partial derivatives -- with an accuracy
to the constant factors coincides with the expression for the co-
efficients of equations used to process results of telemetric
measurements aimed at defining the parameters of motion.

Examination of the phase telemetry method thus permits us to
show the meaning and function of partial derivatives of instant-
aneous range with respect to definable parameters, which appear
in all terms, without exception, of the general formula for the
maximum values of the second derivatives of the ACF. Partial
derivatives in formulas (3.3.22) and (3.3.23) reflect the stage
of optimum signal processing which corresponds to the stage of
"secondary" processing of trajectory information. The purpose
of the stage of "secondary" processing consists, as we know, of
defining the parameters of motion with respect to range measure-
ment results.

It should be stated, however, that (4.2.2) and not (4.2.3)
is more similar in content to the formula of coefficients of norm-
al equations. Indeed, beneath the summation sign (or integral)
in the expression for coefficients of normal equations, in addit-
ion to the products of partial derivatives, we must represent the
weight coefficients, whose magnitudes are inversely proportional
to the dispersions of isolated measurements. The function of
these weight coefficients in this case is filled by the factors
A2dt, which reflect the influence of errors of some imaginarymmeasurements dt in duration. Hidden within these factors is also
the relationship as a function of distance between SV and the
point of observation. Indeed, signal amplitude at the point of
reception Am is associated by an inversely proportional relation- /87

ship with the distance to the SV. Consequently, the factors
Am2 allow for the relationship between signal strength and range

to the SV and indicate the influence of this relationship on the
accuracy of defining the parameters of motion.

Therefore, formula (4.2.2) and formulas in section 3.3, in
addition to everything else, define the choice of weight coeffi-
cients in optimum signal processing; these coefficients are di-
rectly proportional to signal strength at the point of reception
and consequently, inversely proportional to the square of the
instantaneous range between the SV and the point of observation.

It should be noted that in forming the weight coefficients,
several other quantities participate which lie beyond the limits
of formulas for secondary derivatives of the ACF. Participating
in this process, in particular, is the quantity of spectral den-
sity of noise N0, which with Z' (0) enters into the expression for
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elements of correlation matrices cited in sections 3.1 and 3.2.

On the other hand, the material in section 4.1 clearly shows
that the maximum values of the secondary derivatives of the ACF
depict the process of measurement of instantaneous range and
velocity of objects.

It is therefore clear that the formulas for maximum values of
the second derivatives of the ACF encompass the measurement pro-
cess of topocentric SV coordinates (and likewise, their derivatives)
and the process of processing these coordinates to define the
parameters of motion.

Let us now examine expressions for the maximum values of the
second derivatives of the ACF corresponding to the specific con-
ditions of pulse measurements. Let us assume that the received
signal is in the form of short pulses which occur with a certain
periodicity during the measurement session of T duration. Let
us state that the pulses are so brief that the partial derivatives
of range with respect to the parameters of motion, within the lim-
its of pulse activity, may be considered constants.

With the foregone assumptions, the partial derivatives of range
may be removed beyond the integral signs in formula (3.3.23); these
derivatives, generally speaking, are functions of time and the
coordinates of the reception point and are related to the moments
of activity of the corresponding pulses. Assuming, as before,
that the envelopes of the pulses are even, and the derivatives of
modulating functions are odd functions of time, for the maximum /88
value of the second derivative of the ACF we derive the equation

Zi d(j ). * 1A' 1 dVdt. (4.2.5)
I k 1 k

In this formula, the space-time integral with respect to the
area of reception, corresponding to all antennas of the complex
and the entire time cycle of measurements, is replaced by a double
summation of integrals, each of which is calculated with respect
to an individual antenna of the complex and discrete pulse.

The integrals entering into individual terms of the last
formula are second time derivatives of the ACF of discrete pulse
signals, received by different antennas of the complex:

(4.2.6)
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They describe the potential accuracy of measurements of the time
lag of isolated pulse signals. In general, formula (4.2.5) also
is analogous to the formula for coefficients of normal equations,
which is used in processing results of telemetry measurements;
the integrals of (4.2.6) act as weight coefficients in these form-
ulas.

The particular cases of using the electromagnetic field which
have been examined in this section are associated with the use of
information supplied mainly by modulating oscillations. In the
measurement process, however, information may also be used which
is contained in the phase of carrier oscillations. Information
on carrier phase is implemented, as we know, in Doppler and gonio-
meter measurements. Let us first-examine the problem of accuracy
of Doppler methods of defining the parameters of motion.
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4.,3. The Potential. Accuracy of..the.Doppler Method. /88

At present, electromagnetic fields.whose initial phase
is random and constant ..within the.limits of. some interval (the
noise. correlation interval.)..are used- in practice for measure- /89
ments. Subsequently, .it is impossible-.to-realize phase methods
with a measurement at the carrier frequency by means of such
signals. Nevertheless, in..the ranges used for communications
with space vehicles, these methods are not. realizable for
another -reason:, for their. execution,.practically insurmountable
difficulties arise.in eliminating the ambiguity of. the measure-
ments. Nonetheless, with sufficiently high frequency stability
(this means sufficiently great length of the phase's noise
correlation interval), signalswith. an-unknown initial phase
can be used for defining the. :parameters of motion. Measure-ments become possible if, having. rejected -the use of .infor-
mation included .in the carrier,'s. initial ,phase, information is
used which....is-contained in, an -increment of-.the phase in a
measurement interval or, ,which .is .n essence the same, the
frequency of.the carrier waves.. The corresponding methods of
measurement.have been called Doppler methods.

Doppler methods have in recent years be nJ.sinificantly
developed in communications with' progress in the areas of
aviation and.space technology . Successes in stabilizing the
frequency generations by means .of which. sounding and reference
signals are formed have played a. significant role in this.

The materials in Chapter 3. allow-.us to. evaluate the poten-
tial.accuracy off Dopplerimethods. in the .general.1.case where not
only the velocity parameters, but :also the.elements of the
objects. are included.in.the. number of definable parameters of
motion. Let us assume at.first that. the:. on-board transmitter
of the SV emits unmodiulated waves which., -upon reception on
Earth, -are fed to .the ,signal input of a quadratic. correlometer
(Fig. 4.1). Let the reference signal representing the model
of the signal to-be receivedialso be-formed on'Earth according
to apotia dat a. - The initial. phase.of the reference signal
obviously does not. have a value; however, a phase increment
during the time of measurement and'the temporary motion of
measuring this increment, i.e.., the frequency of the signal,
should be matched so that they correspond to the phase in-
crement and the .frequency of the useful signal. Such congruence,
as is.well known,. will be attained with'congruence of the real
and a. priori values' of' the.parameters of motion. Let us again
note.that, in contras.t to, phase range-measuring methods, with
.a measurement.at the..carrier frequency, information about the
parameters of .motion in Doppler. measurements is derived from
phase.measurements and .:signal ,frequency .measurements. Since
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the.phase increments and frequency increments which we are
discussing are due to the Doppler effect, the method described /90
is called the Doppler method.
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Fig. 4.1. Structural diagram of a square
correlometer.

It follows from the arguments given that the last two
terms offormula. (3.3.23) give the overall idea of the poten-
tial accuracy of the Doppler method, since :they reflect in-
formation. contained in the carrier wave phase in conditions
where the initial phase of this wave is not known and can
assume any value within the limits of 0 to 2 7r with equal
validity. Thus, disregarding. the. "amplitude" terms of for-
mula (3.3.23), we find..that the potential accuracy of Doppler
measurements is characterized by the following magnitude of
the maximum value of the. ACF second..derivative with respect to
the definable parameters:

Zj (0) =- - k2 A2dVdt+
2 idq, dq1 e

VT

S $ r k eAdVdt)( ar k:A2dVdt). (4.3.1)

In deriving this formula, it was taken into account that Dop-
pler systems use a predominantly non-inquiry method of opera-
tion.

Which parameters of motion can be.determined by the Dop-
pler method? It.is evident that if the SV moved.with. cnstant
velocityrelative to-the observer (i,.e.,. only moved away ,-
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from or closer to it), then it would be possible to- measure /91
only- its velocity. Formula (4.3.1). verifies this. Actually,
in the absence of phase modulation, the maximum value of the
ACF second derivative with respect to the initial distance is
equal to zero, although the maximum value of the ACF second
derivative with respect to the velocity has a defined finite
value.

It is easily noted that the ACF second derivative with
respect to the initial distance becomes equal to zero because
dr/drn = 1. However,, in the overwhelming majority of actual
situations, partial derivatives of the instantaneous range
with respect to the SV's initial coordinates are different
from L, and equalization of the first term of formula (4.3.1)
by the. second-, generally speaking, does not occur. Consequent-
ly, in these situations the ACF second derivative with respect
to the coordinates will not be zero, which attests to the pos-
sibility of .defining the initial conditions mentioned.

In shifting from. an unmodulatbd signal to a phase-modu-
lated signal and similarly disregarding previous information
which was included in the signal's amplitude, we find that this
transition does not lead to a significant change. in the pro-
cesses which occur in Doppler measurements, although phase
modulation can lead to an increase or decrease in. accuracy.
As an.-examination of the first and second components of for-
mula (4.3.1) shows, the potential" accuracy is determined in
a given case by the value of the effective wave number equal
to ke = k + '/gr, and consequently if .'> 0, then ke > k, and
the accuracy of measurements by means-of a phase-modulated
signal will'be greater than the accuracy of measurements on
unmodulated carriers. It is interesting that an increase in
the accuracy of Doppler measurements because of phase modu-
lation is taken into account by the same terms of formula
(3-.3.22) which describe the increase in accuracy of pulsing
methods of range measurements.

A model of a uniformly withdrawing or uniformly nearing
object shows that measurement-i conditions exist which are un-
favorable for application of the Doppler method. It is there-
fore advisable to examine the question of feasibility conditions
for Doppler methods in a somewhat more general form. It is
evident that the magnitude of the ACF second derivative,.meaning,
the accuracy of Doppler measurements, is greater than in other
similar conditions the smaller the second term of formula
(4.3.1) is in comparison with its first member. Accuracy com-
pletely depends on the magnitude of the difference between
these terms. Consequently, for evaluating the conditions for
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for attaining the greatest accuracy, it is necessary to develop /92
conditions in which the difference referred to is maximum.

Using the Bunjakovskii-Schwartz .inequality, restricted to
the case of a signal with constant amplitude, for the diagonal
elements of the ACF second derivatives, we will derive the
following relation:

VT d ) 2 k. dVdt r kedVdt (4.3.2)
T vrT

The equality in this formula is attained only in the case of
the independence of the magnitude

dr
(Iqk
0qj e (4.3.3)

from variable integrations, i.e., from time and the spatial
position of the observation point.. In the general case, the
magnitude of the product (4.3.3) isarunction of time and the
coordinates of the reception.point;" consequently, the maximum
value of the ACF second d6tivative will not be zero, i.e., the
Doppler measurements will yield specific metric information.

Inequality (4.3.2) is increased with a stronger degree
of variability of function (4.3.3) in the measurement interval,
and it will be especially large if function (4.3.3) in the space-
time area f reception is alternating. Finally, the inequality
attains its ultimate value when the first part of inequality
(4.3.2) becomes equal to zero. This occurs when function (4.3.3)
is an odd function of coordinates and time. In the latter
case, the potential accuracy of the Doppler method will be
determined by the magnitude of the first component of formula
(4.3.1) and, consequently, will be equal to the potential
accuracy of the phase method of range measurements at the fre-
quency of carrier fluctuations, i.e., the frequency obtained
with a known initial phase of carrier fluctuations.

Only partial derivatives with respect to some parameters
of motion can satisfy the condition of oddness. Parameters
of motion whose partial derivatives do not satisfy this con-
dition will be defined with less accuracy. Parameters whose
partial derivatives are not.functions of the coordinates and
of time are generally not determined by Doppler measurements.
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Thus, the potential accuracy of the Doppler method for
defining parameters of motion is described by the maximum value
of the ACF second derivative, represented by formula (4.'3.1). /93

Let us return to this formula once more and turn our at-
tention to some of its properties. First of all, it is sig-
nificant that a wave number appears in this formula, meaning
that the accuracy of measurements is determined by the fre-
quency of the carrier fluctuations. This is a very important
fact. Let us recall that the accuracy of phase range-measuring
methods is a functions iOfthe frequency of the modulating fluc-
tuations or the frequency of the pulses.

In further analyzing (4.3.1), it is impossible not to
turn our attention to its connection with the formula for
coefficients of systems of normal equations. It is seen that
the first, fundamental term of formula (4.3.1) is analogous
in structure to the formula for the coefficients mentioned.
However, the analogy ends here, since with further examination,
substantial differences are revealed between the formulas.
The first is connected with the presence in (4.3.1) of a second
component which is absent in the formula for coefficients of
normal equations. The derivation and role of this component
has already been discussed.

The second. difference between :the formulas is more im-
portant in a principal respect thah- the first; this is the
difference in the composition of the first component's terms.
In the formulas for 6obefficients of normal equations, formed
in processing the results of Doppler measurements, the partial
derivatives of the radial velocity component according to
definable parameters [1, 3, 41 occur, and in (4.3.1), partial
derivatives of the instantaneous range are shown instead of
these. In this respect, it is clear that each of the terms of
formula (4.3.1) separately or their algebraic sum do not
result in the formulas.for coefficients of normal equations
with the partial derivatives of the radial velocity component.
Thus, generally speaking, there is a definite difference be-
tween evaluating the accuracy of Doppler methods with fre-
quency measurement data processing according to the method of
least squares and evaluating the potential accuracy. Deter-
mining the degree of difference in accuracy evaluations is
difficult in a general form; therefore, this question is not
examined here. We will limit ourselves to one short remark.

SWe must keep in mind that the realization of a measurement
procedure which ensures attainment of accuracy of equal poten-
tial is connected with surmounting significant difficulties
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and requires much more complex and expensive equipment than
the execution of less precise procedures. In this connection,
measurements are usually made in practice by recording the /94
Doppler frequency shift or integrals of it after a fixed
segment of time with subsequent processing of measurement data
according to the method of least squares. This methodology is
distinguished by its simplicity and very high efficiency.
Only in those cases where especially high accuracy and reso-
lution are required is correlation, i.e., optimal signal pro-
cessing, used. Similar processing is used as necessary in
radar systems for lateral scanning of the Earth's surface [27],
which is an unusual ("non-space") example of the execution of
a Doppler measurement method.

Moreover, it should be kept in mind that the optimization
of measuring systems in practice is usually carried out not
according to one, but according to several criteria, and in
a number of cases not precision, but some other criterion plays
a decisive role. This must also be taken into consideration
in using the materials cited here.

§5.4, in which the evaluation of the potential accuracy
of Doppler and range-measuring methods of SV measurements on
one pass through the visibility range is given, plays the
role of a model which illustrates the fundamental statements
of the given section.

4.4. The Potential Accuracy of Azimuth Scale-Range Measurements

Let us apply the relations obtained in Chapter 3 to the
particular case of azimuth scale-range measuring systems.
A system whose antenna device dimensions are small in comparison
with the distance to the SV is usually called an azimuth-scale
system. If the antenna device consists of several spaced an-
tennas, then not only the dimensions of. the individual antennas,
but also the distance between them must satisfy the condition
mentioned. Because of the relative smallness of the antenna
system, the directions to the SV from its different points can
be considered parallel, and the problem of determining the
spatial location of the SV is reduced to determining the dis-
tance to the source and two of its angular coordinates. If the
observer has sufficiently precise a priori data available, then
it is clear that in the measuring process, instead of defining
the object's coordinates, we will be limited to a location having
a comparatively small quantity of corrections to the a priori
values of distance and angular coordinates.

Let us set up the problem of evaluating the potential ac- /95
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curacy of azimuth scale-range-measuring systems, i.e., the maxi-
mum accuracy which can be obtained by means of an electromag-
netic signal field which is to be recorded in a small area of
space in comparison with the distance to the SV. We will
assume that for the measurements, a field modulated by ampli-
tude and phase whose initial phase is unknown is used. For
simplification of the problem, we will also assume that the an-
tenna has axis symmetry in relation to the direction to the
field's source.

i I I/s  For the symmetry of an antenna, it
I is sufficient to evaluate the accuracy

of defining only one complete angular
coordinate.

We will derive an expression for
/A A the ACF signal second derivative, assuming

A' A, that only two symmetrically positioned
"A r6 A elements not having directivity are in-

cluded in the antenna. We will use Fig-.
4.2 for this, in which points S and S'

Fig. 4.2. The geo- are shown as the reference (a priori)
metric relations in and actual location of the source; points
defining the SV's an- .A1 and A2 are the reference positions
gular coordinates. of the antenna elements; Ai and Alaire the

positions in which they appear after com-
pleting the process of taking a bearing;

and rA is the distance from the antenna elements to its axis.
The letter y designates the angular coordinate of the source;
Ay is the difference between the a priori.and actual values of
the angles; and 00' is the origin of the angular coordinates.

We can see from the figure that the differences of a priori
and true values of distances from the first and second antenna
elements to the SV can be represented by the formulas

Ar , =:+:ro + rA ,

Ar2  t Aro - rA  ', (4.4.1)

where r0 is the difference between the real and a priori dis-
tancesfrm the center of the antenna to the SV.

The magnitudes Ar0 and Ay are functions of the definable
corrections to the parameters of motion; therefore, using a
Taylor expansion, we obtain
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Ar2 = dro d Aq. (4.4.2) /96
r2= ro r ) A qj.

dqj dqj

Consequently, in range-azimuth scale measurements, partial
derivatives 6o the distance between the orep, m gelemhts
of the antenna field and the SV are equal to the sum or dif-
ference of two values:

Oro _ ___

+r
qq A 0 iq (4.4.3)

one of which is the partial derivative of the a priori value
of the distance between the center of the antenna and the SV,
and the other is proportional to the partial derivative of the
a priori value of the angular coordinate.

Placing these values in (3.3.23) and taking into consider-
ation that the ACF second derivative which describes the
measurement process as a whole is equal to the sum of second
derivatives calculated for the different antenna elements,
we will obtain

Z (O) dro dro- AA" dt

S y AA" dt -
v2r f dqj Oq,

-2 k? 'O dr A2dt-,. dt- -  (4.4.4)

.+ k. A2 dt k A 2 dt)

In this formula the case is ,epresented where, for range
measurements according to a retransmitted signal, the inquiry
signal of a terrestial transmitter passes the doubled distance
to the SV at the same time as in measuring the angles the output
effect is determined by the quantity of ordinary differences -
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of the distances from the individual antenna elements to the SV.

It is evident that in the transition from a two-element
to a multi-element antenna, we will obtain a formula of the
same structure. In the case of a multi-element interspaced
antenna operation, the spatial integration obtained by deriving
formula (4.4.4)must be completed, which for a linear antenna /97
reduces to integration-with coordinate KA. Moreover, instead
of the power of a signal proportional to the square of the
amplitude, it is necessary to examine the power of a signal comin
ing to a unit of the cross-section or length of the antenna.

For example, for receiving signals on a flat antenna with
a square aperture, the length of a side of which is equal to D,
for a more informative, third term of formula (IV.4.4), we will
derive the following expression

8 e dt. (4.4.5)

Here A2 is the flux density of the signal power.

In the case of reception on a circular antenna with dia-
meter DO, the third term of formula (4.4.4) assumes the form

z; (0) = -- D 4 k2e Adt
128 dq S (4.4.6)

These examples show that in passing from a two-element
antenna to a single-element antenna, the composition and logical
value of the terms of formula (4.4.4) do not change, and it is
therefore possible to limit our examination only to this formula.

The first term of formula (4.4.4) dscribes the potential
accuracy of measuring the distance from the center of the anten-
na to the SV by using information contained in the envelope;
the third and fifth terms reflect the potential accuracy of
Doppler measurements, and the second and fourth terms consider
the potential accuracy of azimuth scale measurements (the
second term corresponds to measurements with respect to the
envelope, the fourth termf with respect to the carrier fluc-
tuation phase).

Which deductions allow analyzing the formulas obtained?
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First of all, we can see that in receiving signals on
a comparatively small antenna, the.angular coordinates and the
distance from the center of the antenna supply all the infor-
mation about the parameters of motion which can generally be
obtained by means of an electromagnetic field. As is to be
expected, in measuring the distance from the center to the SV,
azimuth scale measurements are totally equivalent to measure-
ments of the distances from each point of the antenna to the
SV. However, it can be seen from this that azimuth scale
measurements without measuring the length from the center of
the antenna to the SV allow using only a part of the informa- /98
tional possibilities of the field.

It is further possible to conclude that all the components
of formula (4.4.4), responsible for the accuracy of range and
azimuth scale measurements, are analogous in structure to the
formulas for coefficients of normal equations used in processing
range-measuring and azimuth scale data.

We can also see from formula (4.4.4) that the absence of
data about the initial phase of.the electromagnetic field
does not have an influence on the potential accuracy of azi-
muth scale measurements. Finally, a characteristic feature
of this formula which must be acknowledged is the absence of
terms representing information about the velocity of the
angular shift of the objects. As was already noted in the
analysis of formulas (3.3.22). and (3.3.23), this does not mean
that the similar information of formula (4.4.4) is generally
not taken into consideration -- it is implicitly considered.

'4.5. A Model for Realizing the Principle of Optimal Signal
Filtration: The Planetary Radar of the Academy of
Sciences of the U.S.S.R.

In concluding the description of the potential possibilities
of different methods for defining the parameters of motion, we
will give a model of a system of orbital measurements in which
the principles of optimal filtration, described in this book,
are basically realized. Planetary radar [11] serves as the
model of such a system.

The basic purpose of radar consisted of making the absolute
magnitude of an astronomical unit more precise -- the impor-
tant constant which is included in the equation for the motion
of the Earth and other planets of the solar system in the form
of a unique parameter of motion.

The general concept of defining an astronomical unit by
means of radar was included in the selection of i value for this
magnitude in which the calculated values of the instantaneous
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phase lags and Doppler frequencies of signals deflected from
the'planets were equal to the measured values of these magni-
tudes. A phase method of range measurements on frequency modu-
lation and the Doppler method of measuring radial velocity com-
ponents at the carrier fluctuation frequency were used in
radar,. Amplitude manipulating fluctuations whose frequencies
were distinguished by high stability (10-9) served as the sig-
nal. The method of frequency manipulation was also used, but
it was of secondary value. The manipulation frequencies were
close to 4 and 8 Hz.

The magnitude of the correction to the astronomical unit
was judged according to the output effects of a.correlometer
and narrow-band filters; a correlometer was used for discrim-
inating the envelope of the amplitude manipulating signal and
filters at the output of the last frequency conversion circuit
were used for discriminating the carrier.

Methods of receiving and discriminating signals used in
radar have a number of characteristics which are technical in
nature.

1. The predicted values of the envelope phase lag and /99
Doppler shifts of the carrier and envelope fluctuations were
not fed into the receiving side of the system (for forming a
correlator reference signal), but into the transmitting side --
for forming a transmitting (sounding) signal.

Due to this, selective fixed-tuning filters were success-
fully used for discriminating carrier fluctuations. The fre-
quencies of the tuning filters overlapped the range of expected
values for signal frequencies after the last frequency con-
version. By means of the filters, the magnitude of the Dop-
pler frequency shift of the signals received was determined.

2. Theipossibility of determining and recording the cor-
relation function of the amplitude manipulating signal's en-
velope was provided for in radar. According to the value
of the reference signal phase shift with respect to the sounding
signal in which the output signal of the cozrelometer attains
the maximum, a deduction can be made about the difference be-
tween the real and predicted values of the received signal's
phase lag with respect to the sounding signal.

3. The received signal's envelope lag with respect to the
sounding signal is determined in a sequential method by means
of repeated reproduction of the receiver's output signal which
was recorded with different values of the reference signal lag.
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Due to storing the.received signal, more efficient use of signal
energy at observation.was obtained (the lengthy process of
selecting a priori data values closer to the real values was
done after the end of the communication session), and excessive
complication of the analyzer circuit, in which a parallel
optimal filtration circuit was used, was avoided.

A great deal of more interesting information can be ob-
tained from examining the functional circuitry of planetary
radar. Radar can be divided into three basic component parts.
The first is properly radar with a signal recording system
which acts on the output of the last frequency conversion
circuit. A simplified structural diagram of this part is
shown in Fig. 4.3. The second part of radar includes two weak
signal analyzers. A simplified structural diagram of one of /100
the analyzers is presented in Fig. 4.4. A signal recording
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Fig. 3.3. Structural diagram of a planetary radar
receiving-transmitting device.
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Fig. 4.4. Structural diagram of a plane-
tary radar weak signal analy'zer..
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system, for which a tape recorder is used, is the connecting
link between both parts.

The third component part is a computer, by means of which
the calculation for predicting.the distance and Doppler correc-
tion and for defining the astronomical unit is carried out.

The functional circuitry characteristic of radar does not
require any elucidation; therefore, commentary will only con-
cern the analyzer circuitry (Fig. 4.4). There is a switch at
the analyzer's input which controls the reference fluctuations
of the manipulation frequency. By means of this switch, multi-
plication operations of the received signal's envelope and the
reference fluctuation are carried out, composing the first
stage of defining the correlation function. Narrow-band
filters, linear detectors, threshold circuits and recording
devices which simultaneously serve as correlometer integrators,
come after the switch. The duration of integration is 5 minutes.
Signal recording and storage, effective within the limits of
the first and second half-periods of the reference signal, are
carried out separately. The difference in the values of the
output voltages with respect to the first and second half-
periods defines one value of the correlation function. Thus,
a number of correlation function values are recorded, and the
reference signal lag, in which the correlation function attains
its maximum, is defined.

By means of planetary radar, the accuracy of defining an
astronomical unit was increased by more than two orders of
magnitude. Radar also allowed the attainment of much more im-
portant scientific information about the planets of the
solar system.
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Chapter 5 /101

POTENTIAL ACCURACY OF DEFININGDIEFERENT SYSTEMS: OF PARAMETERS
OF MOTION

5.1. Content of the Problem

As is known, various geometric and kinematic values which
uniquely describe the law of motion of a SV (or the position
of the observer) appear as definable parameters of m6tion.
Derivatives of distance according to the definable parameters
of motion which depend on the choice of these parameters and
on the coordinate system in which they occur are part of sub-
integral expressions of autocorrelation function second deri-
vatives. Consequently, the potential accuracy of the complexes
will be a function of these factors.

An investigation of this dependency and the selection of
coordinate systems which ensure high accuracy of definitions
or a more adequate reflection of the possibilities of measure-
ment complexes, comprise the basic content of the present
chapter.

Before beginning to examine the questions mentioned, it
is appropriate to consider the physical interpretation of the
orbital or navigational (geodetic) measurement process.

The.physical picture of the phenomena which take place in
defining the parameters of the SV's motion or in measuring
navigational and geodetic parameters is quite evidentW It can
be represented in the following manner.

In carrying out measurements by means of a given radio-
engineering system during one pass of an artificial earth
satellite in the visibility range, we will obtain a set of
the position's planes. In the case of range measurements which
describe the potential accuracy of determining the SV's para-
meters of motion, a set of concentric spherical planes whose
center, in observation from Earth, is placed at the point of
the observer's location, is obtained. A fixed set of values
for the received signals' parameters correspond to this set of
positional planes. The measurement process consists of com-
paring these signal parameter values with the corresponding
a priori reference signal parameter values which are constructed
by means of a priori information about the SV's movement with
respect to the observer. The problemwiconsists of the fact that
judgments must be made about the difference between the a priori
and real values of the parameters of motion and about the /102
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actual law of motion of the SV with.respect to the differences
between the ajpriori and real values of the signal parameters.

It is evident that the parameters of motion will be defined
more accurately with greater correspondence of the signal para-
meter deviations to the given deviations of.the parameters of
motion from their nominal values. In turn, this will occur
first of all in the case where the gradients of the location's
planes are sufficiently great. However, the problem is not
exhausted by the dependency on the magnitude of the gradients,
as this occurs in normalposition-finding. If we solve the
navigational problem by defining the position of an airplane
or ship, then it is necessary that the angles of intersection
of the different position planes fully satisfy the defined
conditions.

Analogous conditions must be fulfilled in defining the
spatial position of the SV, although at.first glance, the state-
ment about the angles of intersection of the SV's position
planes, whose location changes from measurement to measurement,
does not seem fruitful. In reality, in conditions where there
is sufficiently extensive a priori information, it is possible
to use the assertion about the position plane angles of inter-
section, and this offers the possibility of achieving the
conversion from non-simultaneous measurements of the same
geometric magnitude to defining the SV's position in two- and
three-dimensional space. Due to the use of a priori data,
the results of non-simultaneous measurements can be reduced to
one point in space, and parallelly transferred a priori and
real position planes obtained in the process of measurements
offer the possibility of judging the magnitude of the deviations
between the a priori and actual values of the parameters of
motion. The principle of the SV's movement with respect to
these data can be reproduced more precisely with more favorable
angles of intersection between the position's planes, i.e., the
greater the changes are which the directions normal to the
position plane at the time of measurement undergo.

Finally, :it was shown that accuracy can also be a function
of the choice of a system of coordinates in which the measure-
ment results are represented. The essence of the given ques-
tion is contained in the following.

As experience shows, together with the coordinate systems
in which linear values and their derivatives are used for ex-
pressing the SV's position and velocity, coordinate systems
are used in practice in which the SV's position and velocity /103
are expressed by means of a .combination of linear and angular
magnitudes and their derivatives (a spherical system of co-
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ordinates) or by means of a combination of three angles, time,
linear and.dimensionless magnitudes (Keplerian elements), etc.
In this connection, the dimensionality of the discrete elements
of the system of coordinates used cannot coincide with the
dimensionality of the electromagnetic field parameter in which
information about the motion is contained. In the most general
case, the distance, i.e., a linear value, appears, as we know,
as such a parameter. Therefore, in the composition of analytic
expressd6nswhich describe the accuracy of defining parameters
of motion in a system whose coordinates are heterogeneous from
the point of view of dimensionality with lengths or their deri-
vatives, it is necessary to consider the coefficients in these
expressions which describe the relationship of the dimensions
of defined and initial magnitudes.

On the other hand, in examining the properties of coordin-
ate systems used for representing the final measurement results,
we will encouhter a dependency of the defined parameters'
errors on the magnitudes of these parameters. Errors in defin-
ing the coordinates and velocity of objects in rectangular
Cartesian coordinate systems for selected units of measure-
ments are not functions of the position and velocity of the
SV's movement, and the accuracy of defining parameters of motion
with known units of measurements do not depend on the choice
of coordinate systems. However, if angular cooadinates are
used for representing the SV's position, and angular errors in
defining the coordinates are used instead of linear errors,
then it is obvious that the errors in defining the angles and
angular velocities corresponding to the values of the linear
errors in defining the spatial position and velocity of the SV
will be a function of the position of the SV relative to the
origin of the coordinates, although it is clear that in the
reverse transition to linear errors, we will naturally eliminate
such a dependence.

Such are the initial physical considerations which emerge
when we begin analyzing the potential accuracy of a complex which
measures the SV's parameters of motion.

The complete quantitative characteristics of all the phen-
omena mentioned are given by a matrix of second derivatives of
the signal field autocorrelation function according to the SV's
definable parameters of motion. We.will attempt to explain
how these phenomena are quantitatively reflected in formulas
for the second derivatives of the autocorrelation function, and
that there is no possibility of breaking these formulas down
into component parts corresponding to the different.stages of
the measurement process.
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5.2. The Dependency.of Potential Accuracy on the Selection /104
of. Systems of Defined .Parameters

Turning to the formula for the second derivative of the
autocorrelation function according to definable parameters of
motion

Z;(0)=1 rA'd Vdt+
Zz (0)r= r ( AA' dVdt±

Oqi q, ". kr e /
VT 

'+2 AA- k? A2dkeAdVdt )X

VT

V V r
V qkeA2dVdt) (5.2.1)

where ke = k + '/Vgr, we will recall that the fundamental dif-
ference of this formula and .formulas. fi. evaluating the poten-
tial accuracy of defining primary parameters lies in the fact
that partial derivatives differing by a unit from the instan-
taneous range between the SV and the observer with respect to
the defined parameters of motion are included in it.

Derivatives of the instantaneous range according to the
definable: parameters of motion can be expressed by derivatives
of the instantaneous range according to thetcoordinate com-
ponents of velocity with respect to some fixed moment of time,and the derivatives of the coordinates and components of velo-
city according to definable parameters of motion with respect
to the same moment of time.

Geocentric, topocentric rectangular, spherical or cylin-
drical systems can be used as coordinate systems in which the
initial conditions are fixed. For determinancy, we will as-
sume that a rectangular topocentric.system of coordinates 5,
n, C is used, which can be inertial,. Greenwich, meridional,
or any other in their'orientation.

In designating the derivatives of initial coordinates C,n,C
in.time by these same letters with points 5, n, r, and using
a generalized notation for the initial values of the coordinates /105
and velocities in a moment of time, to which are related
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the results of defining the parameters of motion =6E, n= E2 ...
=E,, we will obtain, for.the. partial derivative of the range

with respect to definable parameters of motion, the following
relation:

6

dr d Or d' 2...
Oq, 'k Oqi (5.2.2)

k=l -_

Consequently, the products of the partial derivatives
will be expressed by the functions

6 6
Or dr dOr Or dO, di
Oq, Oqj k d'k O Oq "q9 (5.2.3)

The second derivatives of the range according to the defin-
able parameters of motion can be represented by means of the
following formulas:

66 _____ AL (5.2.4)

Derivatives 6k /i are not functions of time and spatial
variables by which Integration into formula (5.2.1) is effected.
Therefore, the expression for the second derivative of the
autocorrelation function can be written in the form

6 6
Zq (0) a q 1  02 r AA'd Vdt+

• dq, dqj L 74 1 r ,tk- 1-1 V VT

+2 Ar r TA" -IkA2 dVdt+

VT VT e

SA2k dVdt dr A dVdt

O O AA'dVdt. (5.2.5)
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We should note that the terms in.the 'subintegral ex- /106
pressions which represent the first derivatives of the signal
amplitude usually approach zero, since the signals actually
used, as a rule, have a symmetrical form. Taking this into
account, the formulas for the second derivatives of the ACF
acquire the following form:

6 6

IS dq, do, 1o f 1 rk
k= 1=1I VT

X -- AA" -kA2 dVdt Or A2 ke dVdt)

gr v r

X A2k. Vdt) (5.2.6)

Formula (5.2.6) is one of the elements of the ACF second
derivatives matrix:of maximum values. Using vector symbolics
similar to what was done in §3.4, it is possible to write the
entire set of elements for this matrix. For this, we must
construct the matrix analogs of formulas (5.2.2) and (5.2.3).
Forming the matrix analogs of these formulas is done in the
following way. We insert a vector row of the partial deri-
vatives of the instantaneous range to the SV according to
the initial values of the coordinates and components of
velocity:

dr dr dr dr dr dr dr
=d 1 d=-, dF, ,, "r (5.2.7)

We must emphasize that the letters iq designate the
coordinates and components of the SV's velocity with respect
to a fixed moment in time, to which the results of defining
parameters of motion q are related. It is also important to
keep in mind that no restrictions are placed on sepcting the
position of the origin and orientation of the axes of the co-
ordinate system in which the initial values of the coordinates
and velocity are represented. With respect to considerations
discussed somewhat later, we will also assume that this is a
system of Cartesian coordinates.

The vector row of partial derivatives of distance with
respect to definable parameters of motion is connected to
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vector row (5.2.7) by the relation

Or dr Or

q d dq - q- Jq (5.2.8)

where

, 0~d 8, 0 A, Oq, o,
dq ,  dq2  q3, dq., dq5  dq

J q .-.--.Oq.. .............

G 1,, (5.2.9) /107
q, .dq,

is the Jacobi matrix of transition from initial conditions E
to parameters of motion q with respect to the moment of defin-
ing the parameters of motion.

The matrix of the products of ihelg.instantaneous range
partial derivatives with respect to >the definable parameters
of motion assumes the form

d r d I=dr dr rdrT dr

9, d [ q ~ d di q (5.2.10)

Consequently, the matrices of maximum values for the ACF second
derivatives with respect to the definable parameters of motion
and the initial conditions are interconnected by the relation

Z. (0)= JT z (0) JE

where

Z (0) 2 2r dr AAr -k A2 dV dt l
v L gr

keA 2 dVdt A 2dVdt . (5.2.12)
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Finally, using the vector notation adopted in §3.4, it is
also possible to represent the last formula in the following
form:

Z (0) 2 dlj xx AA" -ek2 A2 dVdt+

+ xk A2'dVdt X

E' VT r i e

S XT dkeAdVdt (5.2.13)

Here, X is the radius vector of the SV given in some topocen-
tric system of coordinates.

Formulas (5.2.6) and (5.2.11) describe the potential
accuracy of defining parameters q with measurements during time
T by means of a three-dimensional antenna occupying area of
space V.

These formulas are very interesting since they reflect
the effect of the autocorrelation function on-the second deri-
vatives, and consequently on the accuracy of measuring two
groups of factors which substantially differ according to
content.

Factors which are a function of the properties and poten-
tials of radio-engineering facilities and of measurement con-
ditions are related to the first group. The second group con-
sists of factors purely geometric in nature, connected with
the properties of coordinate systems used for represeiting the
measurement results.

The effect of the first group's factors is represented by
quadruple integrals, calculated with respect to the area of
space occupied by the receiving .atennas during the measurements.
These integrals take into account the intensity, frequency or
width of the signals, the dimensions and position-of the antenna
systems, the form, length-and position of .the measured tra-
jectory segment with respect to the ground facilities.

The integrals are also a function of the properties of the
coordinate system 05ng, by means.of which the defined initial
conditions are represented,.and of the position of the origin
and orientation of these coordinate axes. In this connection,
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measurement conditions are -calcullated by the partial deri-
vatives which represent the projection of distance gradients
on axis E, nr, . at different. moments of time. and the mag-
nitudes related to them -- the corresponding partial derivatives
of the distance with respect to velocity.

The quantitative reflection 6f *the effect of the second
group's factors are included in the properties of the second
derivatives of the initial conditions according to definable
parameters of motion. These partial derivatives represent the
connection between the initial conditions and the definable
parameters of motion at the same moment of time and describe /109
only the process of coordinate .transformations in the trans-
ition from a system of coordinates in which the initial con-
ditions are given to a system of coordinates in which the
definable parameters of motion are represented.

We can see from the formulas shown that the ACF signal
field second derivatives with respect to defined parameters
of motion, generally speaking, are functions not only of the
properties of the electromagnetic field and the.measurement
conditions (i.e., of the form and relative position of
the measured trajectory segment with respect to the antenna
field), but also of the geometric properties of the mag-
nitudes used for expressing the definable parameters of motion.

Not discussing here the details of the question of coord-
inate transformations, to which Chapter 6 is devoted, we will
emphasize the apparent conditional character of this function.
The reasons for the appearance of such a seemingly unusual
function consist of the following.

The accuracy of defining an object's spatial position is
described by the distance between two points, one of which
corresponds to the real and the other to the erroneously found
position. If geometrical magnitudes having such a property
that the distance expressed by means of them is shown as a
function of the object's position in space are used for re-
presenting this distance, then errors in defining the para-
meters of motion, meaning the signal field ACF second deriva-
tives with respect to the parameters of motion represented by
these geometric values, will also be a function of the para-
meters of motion used. And .on the contrary, if magnitudes
which allow expressing the distance by a relation which is not
a function ;: these parameters are used as the parameters of
motion, then'a similar function will not be characteristic of
errors in defining the parameters of motion.
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This phenomenon in itself does not result in a decrease
in accuracy to which the fact attests that, in the transition
from parameters of motion in which the indicated property is
inherent to a Cartesian system of coordinates lacking
this property, the dependence of the errors-on the position of
the SV disappears. However, as we know, the SV's orbits are
not always given by the initial conditions in Cartesian coor-
dinates.

Moreover, separate inspection of all the mechanisms for
the origin of errors is difficult, and only the final values
of errors in defining the parameters of motion are usually of
interest. In these conditions, an increase in the numeical
values of the errors in defining some components of the posi-
tion vector in the transition from one point in space to another /110
can be assigned due to the imperfection of the measuring sys-
tems. Therefore, experiments in perfecting a measuring complex,
for example, by means of increasing the signal energy, can be
undertaken. Meanwhile, it is obvious that similar efforts are
appropriate only if it is certain that the undesirable depen-
dence of the accuracy on the position of the SV is not connected
with the properties of the coordinate systems. In order to find
such a certainty, it is necessary to express the complex
errors in linear values, i.e., to recalculate the accuracy
evaluation results in a Cartesian system of coordinates, and
only by analyzing the errors in this system is it possible to
make a really correct judgment about the necessity of per-
fecting the complex's measuring agents or changing the posi-
tion of its elements on the Earth's "surface.

Such is the essence of the question concerning the choid"e '
of a syte,-if definable parameters of motion.

5.3. Some Properties of Coordinate Transformations

Correlation matrices which describe the minimally attain-
able values of errors in defining parameters of motion are
related to the maximum values of the ACF second derivatives by
the formula

B-' B N+ E J Z (0) J (5.3.1)

which results from relations (3.2.15) and (5.2.11).

The last component of this formula is a matrix, an in-
verse correlation matrix of minimally attainable values for
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measurement errors B . Consequently,
m

No 1
Bf N _ IZ (0)1-' [J- T

2 E k/(NQ±.Ek) (5.3.2)

It is also possible to write the last matrix in the following
manner:

No (J( Z (0) Jq j* 'B.i- -------
in 2 E k/(No+ 4) (det J,)2det Z (0) (5.3.3)

Here, the symbol det designates the determinant, and the /1
sign * designates a matrix adjoined to the given matrix.

From the formulas derived, it is seen that the accuracy
in defining the parameters of motion is a function both of the
properties of the ACF second derivative matrix according to
the topocentric coordinates, and also of the Jacobian of the
properties of coordinate transformations leading from the topo-
centric coordinates to final values, by means of which the
definable parameters of motion are described.

It also follows from this formula that in transforming the
coordinates, the volume of the correlation ellipsoid, generally
speaking, changes. The volume remains unchanged only for co-
ordinate transformations for which the Jacobian of the trans-
formation is equal to + 1. Similar transf6rmations, as we
know, are executed by the transition from one orthogonal base
to another, also orthogonal:, base. However, in those cases
where one of the bases -- the initial or final one -- is non-
orthogonal, the correlation ellipsoid is deformed in the pro-
cess of transforming the coordinates. Therefore, the Jacobian
ofthe transformation can show a difference of one, either be&'
cause of the difference in the physical dimensions of the
initial and final coordinates, or because of the geometric
pecularities of the coordinate systems, about-which we have
already spoken, and which consist of the fact that the same
value of the linear error for the representation by means of
these coordinates is shown as a function of the object's posi-
tion. It is further obvious that .at those points in which
the Jacobian of.the transformation has properties (approach-
ing zero), the measurement errors increase, approaching in-
finity.
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Finally, we can conclude from examining corr'lation matrix
(5.3.3) that the matrix rank of the ACF. second derivatives,
along the vector of parameters q, does not exceed the rank of
the Jacobian of the transformation matrix and. the rank of the
initial second derivative matrix. With an ordinary Jacobian
of the transformation matrix, it will be equal to the rank of
the ACF second derivative matrix according to the topocentric
Coordinates.. Consequentlyf the dimensions of the vector of
defined.:parameters of motion q (dimensions in the sense of the
quantity of vector components) cannot exceed the dimensions of
the topocentric coordinate vector ;; this means that the deter-
minant of the ACF second derivative matrix will be equal to
zero with respect to defined parameters q if the dimensions of
the topocentric coordinate vector and their derivatives 5
are less than the dimensions of the definable parameters vector
q.

5.4. A Rough Estimate of the Potential Accuracy in Defining /112
the Parameters of Motion of Narrow-Orbit SVs for Range
and Doppler Method Measurements on One Pass in the
Visibility Range

In this section, an example is given for using methods of
evaluating the potential accuracy of measuring agents, dis-
cussed in the third and.fourth chapters, for solving a prac-
tical problem. The materials in..the section allow us to clear-
ly demonstrate the basic.properties and different aspects of
range-measuring and Doppler methods and offer the possibility
of examining the question concerning the informativeness of
various segments of the SV's measured trajectory segments.

For solving the problem,the basic results of the fifth
chapter are also taken into consideration: the definable
parameters of motion are chosen in. such a way that the undesir-
able effect of coordinate transformations are excluded. The
rectangular coordinates of the SV at the moment of flight at
the trajectory point least removed from the observer appear as
the definable parameters of. motion. This point is .called the
traverse of the observer.

The problem consists of evaluating the potential accuracy
of the determinants of the indicated coordinates, i.e., cal-
culating a maximum value matrix for the ACF second derivatives
and a correlation matrix..of .minimally attainable error values.

Solving the given problem in a.general form, i.e., with
any principle of SV movement, is difficult. Therefore, we
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will limit. oursel.es.to examining the simplest-principle of the
SV's movement which .will allow-obtaining results ina final
form. We will assume that the satellite moves with constant
velocity v along a rectilinear trajectory and that the length
of the trajectory segment to be .measured is equal to 2vT, where
2T is the total measurement time.

It should be noted that a linear approximation of the
measured trajectory segment is not always permissible. It can
be used.if the altitude.of the SV's trajectory over the Earth
is comparatively low, since the energy conditions for low
orbits are more favorable .at the receiving point for a flight
on the close traverse segment of a trajectory of comparative-
ly small length, which can be approximated by a segment of a
straight line. It is easy to calculate that the energy of the
signals received from the SV, available in the visibility
range, are some ten times less than the power of signals
received from the SV at the moment of traverse flight. /113

Finally, we will assume that the signal phase fluctuation
correlation is equal to the duration of the measurements and
signal reception is done on a non-directional antenna.

The important question in the problem to be solved is
that of selecting values which are considered invariable in
the measuring conditions. Usually, such values are the power
of the .signal to be received and the spectral density of the
noise at the radio receiver's input. Experience shows that
such a choice of fixed values is more rational for e*sdim&ting
the signal's parameters. However, for solving the problem
according to an estimate of the orbit parameters, or the cooe-
dinates of the observer, or other parameters together with
those taken,.fixing the signal's energy complicates the com-
parison of different methods of measurement, since the power of
the received signal sta function not only of the transmission
energy, the area of the receiving antenna and the duration of
the measurements, but also of the orbit parameters and the
observer's position with respect to the measured trajectory
segment. Therefore, in the given problem, fixing the energy
or power of the transmitting signal, the area of the receiving
antenna and the spectral noise density are more advisable. In
setting the..energy characteristics of the emitted signal,
we will obtain complete identity of the conditions in which the
different measurements methods are compared.

In this connection, a separate examination of two cases
is sensible: where the power of the emitted signal and the
duration of the measurements (i.e., the energy of the emission
is fixed). or only the power of the emission is fixed.. Fixing
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the power of emission offers. us ..the possibility of studying
the potential possibilities of the measuring systems for
measuring during. the entire time.of the SV's period in the
visibility range and computing not only the negative, but also
the positive results of an.increase in the SV's flight altitude.
Subsequently, an assumption about the constancy of the emission
energy is essential. Turning to the duration of measurements
on one pass to infinity, we will.obtain the possibility of
estimating the accuracy of measurements during the entire
time of the SV's stay in the visibility range.

We will first assume that the phase method of
measuring distance in frequency modulation is used, and that
the information contained in the signal amplitude is not direct-
ly used.

We will limit our examination of the measuring process
only to the most exact scale and will assume that elimination
of ambiguities will be attained because of measurements on
several "crude" scales and that, consequently, the to , taF
energy expended .in the measuring process will several times /114
exceed the energy expenditures .on an exact scale.

It is evident that the square of the signal amplitude
at the receiving point is connected with the energy of
emission P, antenna area S and instantaneous range r(t) by
the function

A = PS/4r 2 (t ). 

Since an assumption was made about the.fact that the
object moves according to a rectilinear trajectory, then for
measurements during an artificial earth satellite's passage
through the visibility range, the definition of three coord-
inates and three components of velocity is shown to be im-
possible. Actually, the position's planes, whose effect, as
usual, is revealed in a generalized manner, intersect in this
case not at the point, but along the circumference of the plane
located in the traverse. The result of this is that the
matrix determinants of the ACF second derivatives equal zero.
According to the distance measurement results in one pass, it
is possible to define only two coordinates and two components

6 s sae veh cle's ..velocity .for .a rectilinear approximation
of the trajectory. In view of this, it is advisable to present
the SV's principle of movement in the following form, taking
into account the assumptions adopted:
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r T i f 12 } v t)L,+(1 + vs t)2

where 5, n are the SV coordinates in. the moment of time t=0.

The instantaneous range between.the SV and the observer
can also be represented in the form of a function

r= t2- 2v,rot r,

where

r =2 _2+ _ ; v2=v2+ v2; rov,=v+iv iv  1

Vr is the radial velocity component at the moment of beginning
the time count.

Greater simplicity and clearer representation are attain-
ed if the measurements are begun at the moment of traverse
flight in the case where the distance between the SV and the
observer reaches the minimum. At.this moment, Vr = 0, and
the instantaneous.range is expressed by the formula r =
* Vp+vzt where p is the traverse distance.

The partial derivatives according to..defined coordinates /115
F, D and components of velocity vC, vn are expressed by the
following formulas:

Or dr I
di r ' dO r

dr _ ,t t dr _fit
dv7 7 (5.4.1)

The elements of .the ACF second derivative matrix according
to definable .parameters are computed in the following manner:

m2 2PS (+v t)2 dt
S(0)V 2 4gr dt (5.4.2)
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Deriving the corresponding calculations and inserting
the notations

for the case where measurements are begun in the traverse, we
will obtain the formula

+2 arctg+ + 2 p - (5.4.3)

Fig. 5.1. The velocity vector
and its components in the topo--
centric coordinate system used.

Turning to Fig. 5.1, in which the geometric relations are
represented which take place .at the moment of traverse flight,
and taking into consideration that

V /V=COSa, /p = sin a,

V /V . . ./p cos (5.4.4)

where .a is the angle between the direction to the traverse /116
point and axis n, and also,' efining

arctg x - x(1 -- x 2)= f(x), arctg xx x 2)1 (x (5. 4.5)
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we obtain .the possibility.. of writing the computed second deri-
vative in the following form:

.x 2 a 2 a +i
S(0) 2,v [() cos + f 2 (x) sin 2 a+ xsin2 (5.4.6)

, l._+x2  (5.4.6)

Taking into consideration that the formulas for the ACF
second derivatives according to coordinates E and n are analo-
gous in structure, it is possible to write

Z (0) 2  sina--2f,(x) cos2s_ aS 1 in 2(+

2py I X2 (5.4.7)

Passing to the calculation of the ACF second derivatives
with respect to the velocity components, we obtain the following
relations:

Z (0) = dt - 2v 3 
1 (x) sinl2 a+

0

Slog (I + x) - 21X ] sin 2 +f3 (x) c s  , (5. 4. 8)

where

1 x 2  3S(x) x3 arctg x. (5.4.9)
2 1+X2  2

By analogy, we have

1. (0)=P x2
Z ,I ( 2v3 if,(x) cos2 a log(+X 2)  l- sin2a-

+f 3 (x) sin2 , (5.4 10).
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Z" (0) = Vz; (0)=

"P X2.2: [(x arctg x) sin 2a + log (l+ x2) , (5.4.11)

ZY (0)[= 2 log ( l x2) -X2 cos a +
Z (0)= 2 log(l+x 2  x

+ ,(x) sin2,7 + _x sin2a (5.4.12) /117

+fl(x) sin2a-+ cos 2  , (5.4.13)

Z (0)= Z (0) 2 2  lo (1- x2)] sin 2 -f(x) , 5.4.14)

x2
S(0)= - (arctgx) sin2a 1 +X2 (5.4.15)

Thus, all elements of the matrix of ACF.signal second
derivative maximum values with respect to the components of
coordinates and velocity have been computed.

Since.the relation takes place

Sf(t)dt= f' (t) dt f (t) dt, (5.4.16)-T o 0

then for the symmetry. of the measured segment of the trajectory,
the matrix of ACF second .derivatives is reduced to the form of
(5.4.17). It is interesting that with a=O, a=450 and a= 900,
respectively, the first and fourth, first.and second, second
and third columns of matrix .(5.4.17) become proportional to
each other. This attests to the fact that in the cases men-
tioned, the transformation..of .the given matrix, meaning the
definition of both coordinates and both components of velocity,
becomes impossible.

In the cases cited, only three of the four definable
values are successfully defined. Let us examine, in particular,
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the case where c=O and calculate the correlation matrix of
errors in defining the coordinates. and. vector velocity modulus
for this case.

The initial matrix of second derivatives in the given
case is in the form of (5.4.18):

If, (x) Cos2 o + arctg x sin 2a f (x) si n 2 a -. fi(x) /118pv pv v2

+f2 (X) sill 2 g

arctg x sin 2 1 [f, (x) sin 2 a+ f (x) (x) sin 2a
pv pv v 2  V 2

f2 (x) cos 2 a]

Z"(0) f(x) sin 2 [f(x)sin2 -- sin 2 X

+f3 (x) cos 2 a] X (x - arctg x)

Ax) f (x) sin 2 - (x - arctg x) X -f, (x) cos22
v2 o2 3 v3

X sin 2 + -f3 (x) sin2 a]

(5.4.17)

1 f(x) 0 0

1 1
Z" (0)=x 0 fo (-x) -f (x)

O If (x) .f 3 (x) (5.4.18)
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The error measurement correlation matrix is related to
the ACF second derivative matrices by relation (3.1.16)
which, in the absence of a priori .data, results in the form

B=( b I - NO IZ"(O) ]- ' (5. 4.19)

where NO is the spectral noise density.

Thus, the elements of the second derivative correlation
matrix are expressed by a formula in the form

N, 1Z1 (0)L
b '- 7-,
Sb1- 2 det Z" (0)

where [Z'. (0)]* is the signed minor of the corresponding ele-
ment; de0 Z"(0) is the determinant of the second derivative
matrix which is equal to the following magnitude:

det Z" (0)= z x (z2~ z 3 - z;).

(5.4.20)

Using the formulas derived, we obtain the following
expressions for the elements of the correlation matrix:

b1 1-2-2pSf4 () (5.4.21)

where

(5.4.22)

where

f,(x)= f/(x) 1 / ( (5.4.24)
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2b3 N v2 3

m 2 02PSp f(), (5.4.25) /120

where

A (x)= f 3 x)f(X) 1 (5.4.26)
A (X) A (X)

2 -.No Vgr
b12 =0, b13 = 0, b23 = m2 rs v 7 (x), (5.4.27)

where

f7 (x)= f(x) -f2 ((x)f3 (x)/f(x)]}- i. (5.4.28)

In this way, the correlation matrix of errors in defining
the coordinates and .velocity has the following form:

-vf 4 (x) 0 0

2B = NOv 0 pvf, (x) v2 f (x)

0 v2 f, (x) (v 8/p)fo(x) (5. 4. 29)

Table 5.1

x 0.1 0.25 0.50 0.75 I.0

f, 6.588.10 -  9.684.10 - 3 6.365.10-' 0,1635 0.2854

f 0,1 987 0.4803 08636 1. 24 1.285

A 3,944. 10-  3.581- 10--'  9.087. 10-3 4.50- 10-2 0.1438

f4 1518 103.2 15;.71 6.116 3.504

f, 11.28 4,579 2,402 1,714 1.390

f. 5.681. 10r  6141 229.0 38..91 12.43

A4 -. 1885 -123.8 -16.88 -5.662 -2,760
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The values of functions fl(x) f7 (x) for .a number of
values of the argument are shown in Table 5.1, and the graphs
of these functions are given in Figs. 5.2. and 5.3. -In ex-
treme cases where the length.of the measured segment becomes
sufficiently large, the correlation matrix ..of errors takes the
form

2 ' 0 0'

2iN, V2 0 27-' pv -- (2x)-
lim B =

= m 2 PS v3  v 2
0 -v" (2x) '

0.2x _2T (5.4.30) /121

We will sum up the computations and form some basic
conclusions.

f Graph of Fig. 5.3. Graph of

functions fl(x) functions f 4 (x)f 7 (x).

f3 (x), f8 (x). .

08. 4.0

2.0 3, 5, 0 o 10

Fig.5.2. Graph of Fig. 5.3. Graph of
functions fl(x) , functions f4(x) f7(x).
f3(x), fs(X).

2.0 3,0 5,0 10

0.7071 0.9490 1.181 1.372 . 2-

1,507 1. 49 1 '56 1,570 ,-

1,079 2. -53 6.072 15, 68 2x -- I,5

1.414 1,054 0,8467 0,728S 2r.-

0.9583 0,8360 0.7485 0,6896 2 -
1

1, _339 0,5072 0. 19:0 6,903-. 1 2  (2.)

-- 0,6283 -0,3108 -0,1456 6,02. 1) 2  - (2.)
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First of all, it is necessary to note that the ~rior dis-
persions in defining the topocentric. coordinates and velocity
are directly proportional to the spectral noise density and
inversely proportional to the power of the signal transmitted
by the on-board -transmitter, to the square of percentage modu-
lation and the square of the frequency to-which the position's
planes are assigned.

The errors in defining the coordinates are proportional, /122
moreover, to the velocity and traverse distance and are func-
tions of the relation between the length of the measured tra-
jectory segment and the traverse distance.

If the length of the measured segment is long, the
errors in defining the SV's position in the trajectory exceed
the errors in defining the traverse distance; however, where the
length of the measured segment is sufficiently great, equali-
,zation of the component errors of measurement takes place, and
the error ellipse turns into a circle.

Errors in defining.the velocity are directly proportional
to the square of the velocity modulus, inversely proportional
to the duration of the measurements, and depend on the relation-
ship between the length of the measured trajectory segment
and the traverse distance.

The correlation matrices (5.4.29) and (5.4.30) describe
the potential accuracy of the phase range method of defining the
coordinates and velocity of the SV. We will now calculate
the correlation matrix of errors with the Doppler method of
measuring.

The elements of the ACF signal second derivative matrix
with Doppler.measurements are expressed by the formulas

T

Sk2 r Or A2 dt
2 f dqi dq7

-T

T T

k dr A2dt dr A2dt (5.4.31)
4 dq, fr \T (5.4.31)

Using these, with symmetry of the measured segment, we
deri vethe following, relations:
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Z~ (0)- Z (0) = (x),

pv- L ,(x) - (1 - x 2) arctg x pv 4 ,3)

arcsh x -

[,(0)= fx)-2 arctg x

3. ( (5.4.33)

Z;, (0) = 0, Z: (0) = 0,

Z,(0)- (x) 2x arcshx- - x
S /1 +x2arctg x  . l/1x2

= -- o (x),
_ _ _.. I(5.4.34) /123

where xl =-k 2 PS/8Tr.

Elements of the error correlation matrix -are represented
by the. following, formulas:

4iNo
Sb,, - -P /sW (x );

k2 PS '(5.4.36)

where

f,(x) = f (x) 1 (x f (x) (5.4 37)

4c No vf
b133 k2  S(x), (5.4.38)

where

f (x) -'(5.4.39)
(IX)= 9(x)[ f8 (x) f (x) (5.4.39)
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b_23_-  4 N 2f (x), (5.4.40)k" PS
(5.4.40)

where

f f8 (x) f9 (x) 1'
A ) X)o(x) " (5.4.41)

Thus, the error correlation matrix obtains the following
form:

pvf, (x) 0 0

B, 4 No 0 pvf, (x) v 2 f,13 (x)
k2 PS 0 v2 f,13 (x) v' p-' f,2(x)

(5.4.42)

The values of functions f8 (x)+f l 3 (x) are given in Table
5.2, and the graphs of functions f4 (x), fll(x)+fl 3(x) are re-
presented in Fig. 5.4.

f) X) The chief characteristic of
the Doppler method. error cor- /124
relation matrix (5.4.42) lies in

2 the fact that .the dependence of the
Sro error dispersion in defining the SV's

__ position in the trajectory on the
length of the measured segment is
identical with the corresponding

"I dependence of the range-measuring
0. fmethod, although the dispersions

, .5 .0 5. x themselves, other conditions being
• - ' - .equal, differ from each other by

Fig. 5.4. Graph of ma 2/W2 times. As for errors in
functions f4 (x), defining the traverse distance and
fll(X) fl3(X). velocity, they differ .from.errors in

defining these values by the range-
measuring method not only by size, /125

but also by the nature of the dependence on the length of the
measured segment.. Errors in defining the traverse distance by



Table 5.2

0,1 0.25 0.50 0,75 1,0 2.0 30 5.0 10

fA 4.365.10 - 7  3.888-10 - 5  9.234.10 - ' 4.62210(- 3  1216-102 6.200- 10- 2 0.1079 0,1655 0,2241

4 3- 4

f 1.754.10-6 1.596-10- 4,071.10 - 3  2253.10- 6,647.10-  0,5337 1,342 3p489 10,23 2x - --- rs x)

rl 4

7o -- 8,74910
-7 -7,878 10 - -- i ,9 3 9 - 10 - -- 1,02010

- 2 -- 2,839.10
- 2 -- 0.1802 -0,3722 -- 0.7207 -1,338 -2 - arsh x

fA 1518 103,2 15,71 6,116 3,504 1.414 1.054 0.8467 0,7288 2 --

ft1 4.872.1010 1,638.109 4,852.106 2,220.105 3,197.10 4  882,6 212.8 60.29 20.33 2. (= -- 8 -1

f,1 1,213.1010 3.989-108 1.101.106 4,554-101 5847 102,5 17,12 2.859 0,4454 (2x)-'
arsh x

fa 2,431-1010 8.083.108 2.311-106 1,C05-10' 1,365 104 298.1 59,03 12.45 2,659 4 (2 - 8) - ars x

fi 6,571-104 1,891.10' 1421 369,9 151.6 30,35 15.95 8.974 5,430 (: _ 8) 2

f15 146.1 254.9 69.32 34,21 21.69 8,750 . 5,810 3.849 2.540 1

/ 2arshx
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the range-measuring method are always less than the errors in
defining the SV's position in the trajectory, and their equal-
ity approaches. the limit only with x - . In.the .case of the
Doppler method:, errors in defining .the traverse distance are
always greater than errors in defining the SV's position in
the trajectory. The relations..of the mean square errors in
defining the coordinates and velocity by Doppler and range-
measuring methods are correspondingly equal to

The functions f1 = J ,/-', f , 2 f 6-, f,; = f-3f

are shown in Table 5.2. If the length of th easure tra-
jectory segment approaches infinity, then the limit of error
correlation matrix (5.4.42) is the matrix

2
-pv 0 0

4- No 0 2 V 4 arshx V
-k 2PS 2 -8 (T2 -8)x

4 arsh x v 3  v2
0 v2

(7-8)x 2px 2T
(5.4.43) /126

which, in the nature of the functions, is not very different from
matrix (5.4.30). Matrices (5.4.43) and (5.4.30) basically dif-
fer in the error dispersions in defining the traverse distance.

5.5.. Concerning the Informativeness of Different.Trajectory
Segments

In analyzing the results of the research presented in the
previous section, it is possible to express some considerations
about the informativeness, of the different sections of the
measured trajectory segments.

It is obvious that the specific increase in information
about the parameters of motion which appears in different
sections of the measured trajectory segment of the SV must
differ. Energy conditions at the moment of measurement, the.
velocity of the angular change of the gradient to the planes
of the position, and the position.of the observer with respect
to the measured segment exert.an influence .on the magnitude of
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the increase,. evidently. In.view of the complexity of the
phenimena-, we must make .a special examinationof this.question.

For obtaining a sufficiently .clear picture of the pheno-
mena in the analysis, we must eliminate the-influence of the
coordinate transformations and, namely, according to this
principle, the coordinates..and components of velocity in a
rectangular system of coordinates are .chosen as the definable
parameters.

The first question which must be answered before we begin
to examine the problem of evaluating the informativeness of
the measurements is that which concerns which value should
be accepted -as the informativeness measure of one or another
section of trajectory. At first glance, .it seems that the most
reasonable measure is a value which shows how much the errors
in defining some parameter of motion decrease in measuring a
segment of unit length. However, such a measure proves to be
practically unsuitable, for two reasons. First, it is unsuit-
able in that it does not satisfy the condition of additivity,
which this type of measure must obviously satisfy.

Let us explain what this implies. It would be desirable
ifZ the informativeness measure.were increasing functions of
the length of the section and if the measure of informativeness
of two sections were equal to the sum,-dof the informativeness
measures of each of them.

If a value proportional to a decrease in the measurement
error dispersion in a section of unit length is chosen as the /127
informativeness measure, then such a measure .will not satisfy
the condition of additivity.

Another shortcoming of the measure examined consists of
the fact that it involves the necessity of.choosing an infinite-
ly large value as the dispersion origin. Actidally, with respect
to the degree of shortening the measured segment, the errors
increase, approaching infinity. The choice of.such an origin
is connected with great drawbacks: the .dispersions diminish
to values large. in magnitude,. which attests to the efficient
functioning of the system; at the same time, intolerably
large absolute.values of the measurement errors correspond,
because in subtracting a large but .finite value from the
infinitely large value, we will obtain, as usual, a value which
describes the increase in the measurement accuracy on a section
of trajectory of unit length.



Thus, evaluating the informativeness. of a trajectory
segment by decreasing the error dispersion on it. is shown to
be impractical. It is evident that a value which describes
an increase in measurement accuracy on a trajectory segment of
unit length can serve as a more advantageous measure of
informativeness.

The increase in accuracy can be estimated by the increase
in the value of inverse measurement error dispersion to a
unit segment, i.e., by an increase of the value of matrix
elements

2 k EZ . ...0 1

Ek

In the case of signals whose correlation interval of
initial phase .fluctuations are sufficiently high, it is possible
to take the increase of the value ZVi(0)N'0 as a convenient
measure, or simply the value

ax

which we will designate by the letters I. These measures satis-
fy the condition of additivity, and the origin of each of them
coincides with zero. Thus, it is practical to examine a deri-
vative according to the length of the measured trajectory segment
from the maximum value of the ACF.second derivative with respect
to a definable parameter as the informativeness measure of the
given trajectory section.

Using the measure introduced, we will 'evaluate the
informativeness of different segments of the SV's trajectory
according to their relation. to different parameters of motion.

Determining the. SV's Position/.in the Trajectory

The potential accuracy of defining coordinate X , which
describes the position of the SV in the trajectory, is evaluated
by the maximum valueof the ACF second derivative with respect
to this coordinate which is. identical. in form both for range-
measuring and Doppler methods.

The ifformativeness of different trajectory segments in
d finn this coordinate is described by the magnitude
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_ ((2x 2  (5.5.1)I_ 0 Zl(O) = yIj;(x) -x, 1 ±x2<
d x (1 +x2

where Xz=x/pv.

Table 5.3 /128

x 0 0.5 1.0 2.0 3.0 5,0 10.0

fI (x) 0 0.32 0.50 0.32 0.18 0,07 0,02

f; (x) 2,00 1.27 0,50 0.08 0.02 0,003 0.00

f3 (x) 0 0,04 0,25 0,64 0,81 0.92 1,00

f8 (x) 0 3,6.10- 3  0.18 0,257 0,02 0,01 3,410- 3

(l+x) - 3  I 0.51 0,12 0.008 10- 3

x2(l+x2) - 3  0 0.13 0.13 0.032 0,009 0.0041 0- 4

Note that X is a dimensionless generalized coordinate,
equal to vT/p. If the need arises for evaluating the infor-
mativeness of a trajectory segment measured by normal linear
units 5, then it is necessary to take into account that &>:
relation takes place between the corresponding measures of
informativenes s,

1. =21.
P

The numerical values of function fi,(x) are shown in Table
5.3, and .its graph is given in Fig. 5.5.

From the table and .graph, we can.see that, from the
point of view of defining the .SV's position in the trajectory,
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)the segment removed from the traverse in
f'xz) the length of the .traverse distance is

1.0 _ -- - the most informative. Informativeness
as50 which exceeds half of; the maximum is

K X- I- attained within .the limits of the inter-
val of values x from /3-22=7 v'F7 2 .

. I According to measurements near the
Of *05 4 9 traverse aat distances exceeding the

triple value of the traverse distance,
Fig. 5.5. Informative- the SV's position in the trajectory is
ness of different poorly determined.
,trajectory segments .
with relation to the In ing the data cited, I : hAld /1
different components of :keep ,in mind the fact that they are
coordinates and velo- ' completely related- to the range-measur-
city. ing method. As for the Doppler method,

they are applicable to it only if they
fulfill: theconditions for executing

this method, which amounts to the fact that the measured tra-
jectory segment must include .two segments identical in length
located in the trajectory symmetrical.to the traverse point.

Determination of the Traverse Distance by the Range-Measur-
ing. Method

We can judge the informativeness of different trajectory
segments in a given case by the magnitude Ip = -(d/dx)Z"p( 0)
which in the case considered is equal to Ip = XIf2(X) = 2X/(l+x2 )

The values.of function f (x) are shown in Table 5.3 and
Fig. 5.5.

The trajectory segment near the traverse is the most in-
formative from .the point of view of defining the traverse dis-
tance; the .trajectory segment whose length. is somewhat greater
than the value-of the traverse distance has informativeness which
exceeds half of its value on.the traverse.

Determining the Traverse Distance.by the Doppler Method

The informativeness .of different trajectory segments is
characterized in this case by the function

, = 2.f; (x) = (x - arctg x)2/(1 I- x2)2 (arctg x)2,
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where X,2=x/pv. The values. of this function are shown.in Table
5.3 and Fig. 5.5.

We can see from the graph .and table that the trajectory
segment removed from the traverse at double the.value of the
traverse distance is the most informative. The Doppler measure-
ments in the circumtraverse segment of trajectory are only slight-
ly effective.

Determining- the Components of the Velocity Vector

Data given in the previous section allow judgdin the
informativeness of the velocity measuring process by using signals
with known and unknown initial phases. In this connection, for
a signal with a known initial phase, the informativeness of
defining the longitudinal and transverse components is suc-
cessfully evaluated.

The informativeness of the trajectory for defining the trans-
verse component is evaluated by the same derivative of the func-
tion fl(x),, which describes the conditions for defining the
SV's psition in .the trajectory (see Table 5.3 and Fig. 5.5).
Trajectory segments distant from the traverse point on the length
of the traverse distance are more favorable for defining the
transverse components of velocity.

In order to obtain an idea about measurement conditions more
favorable from the point of view of defining the longitudinal
components of velocity, it is necessary to compute the derivative /130
of function f3 (x) according to x. This derivative is equal to

f'(x) = x4 (l+x2 )- 2

The derivative's values are given in Table 5.3 and in Fig. 5.5.

The trajectory segments. farthest from the traverse are dis-
tinguished by greater informativeness. Measurements on trajectory
segments far from the.traverse point at distances greater than
the traverse have a practical. meaning.

As we see from formula.(5.4.18), the .derivative of f3(x) also
describes the conditions whibh.are more favorable for defining
the velocity vector modulus.

We can judge the informativeness of different trajectory
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segments in defining the velocity .modulus...by means of a signal
with known.initial phase by the value of the derivative f'(x).
The analytical expression for this derivative is rather t~dious
and difficult to analyze; however, from comparing functions
f3 (x) and fg(x), whose values are given in Tables 5.1 and 5.2,
we can see that when x increases, both functions increase mono-
tonically. With a small x, the values.. of-.the second function
are approximately two times less than. the corresponding values
of the first. A numerical evaluation of. the values of the> ':.ii
dr-vative of fg(x) shows that it.differs little from f (xY, both
with respect to the nature of the function and the numerical
values. Therefore, it is possible- to consider that in a first
approximation of the ,informativeness, the properties of different
trajectory segments for defining the SV's velocity for a sig-
nal with an unknown phase are approximately the same as for a
signal.with.a known initial phase.

Defining .the," arameters of Motion by Azimuth-Scale Methods

For completing the picture, it is also expedient to evaluate
the informativeness of different segments of trajectory by
azimuth-scale methods. Since the potential accuracy of azimuth-
scale-methods on one pass were not previously evaluated, we
will cite the formulas for the ACF second derivatives .of a
signal received from A SV moving evenly along a rectilinear
trajectory. Combining the origin..of time. with the moment of
passing the traverse and using the notation accepted in §5.4 for
angle y, equal to-the angular distance between.the traverse point
and the point of the SV's position in the trajectory, we will
obtain

T = arctg = arctg .

The angle's derivatives with respect to the definable para-
meters of motion will b.e equal to

dT _ 1 d 1 dy 1 i
O + 1 2 Op p 1+2 d v v 1+C2

Assuming that the definition of the angular coordinates
is- produced by means of a parabolic antenna.with a circular
aperture:..having.diameter.D 0 , we obtain the .following expressions
for the maximum values of the ACF. second derivatives from for- /131
mula (4.4.6):
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0

The informativeness of the measured trajectory segment is des-
cribed by derivatives of the maximum values of ACF second deri-
vatives with respect to generalized coordinate x, which in the
given case are equal to

? 1 X2 f17(X)'
I x X2 X2 f (x),

v:p (I+x 2): !  Vpf

The values.of these functions are given in Table 5.3 and
their graph is shown in,Fig. 5.5. In examining the table and
graph, we can form the: following conclusions. In defining the
SV's position in .the trajectory by azimuth-scale methods, the
close traverse segment has.the most.. informativeness. Its length
is comparatively small: the informativeness exceeds half of its
maximum value within the limits of a segment whose length is
equal to the traverse distance, which is somewhat less than the
length of the most.informative part of the trajectory with range,_
measurements.

The traverse.distance and the velocity modulus are more
effectively determined at a distance.of 0.75 p from-the traverse.

As we expected, the informativeness of .azimuth-scale measure-
ments decreases 'much more rapidly with.an.increase of the tra-
verse distance than the-informativeness of range measurements does.
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In this respect,, azimuth-scale methods are even inferior to Dop-
pler methods. Naturally, the accuracy of azimuth-scale methods
-as a function of the distance.to the.SV appears weaker if the
linear dimensions or base of the antenna system is:rather large.
In comparing azimuth-,scale with range-measuring methods, it is
necessary to take into consideration that the accuracy of these
systems is usually limited not by the fluctuational errors, but
by other errors, in particular by refraction errors. An impor- /132
tant quality of. azimuth-scale methods lies in the fact that it
is possible .to define not only the SV's position in a plane which
passes through the trajectory and observation point by means
of these methods, but also to define the SV's shift with respect
to this plane. Neither range-measuring nor Doppler methods
permit doing this.

In concluding the examination of the informativeness
of different sections of a measured_2trajectory segment, we should
note several features of the results obtained. First of all,
we can see that it is impossible to speak of the informativeness
of a trajectory segment in general,.without referring to the
definable parameter. From the materials cited, we can see that
the different trajectory segments furnish data which differ
substantially with respect to the parameters of motion.

The near-traverse measurements.are useful from the point of
view of defining the traverse distance..by range-measuring meth-
ods and the SV's shift along the trajectory and across it by
azimuth-scale methods.

The SV's position in the trajectory is defined by the
range-measuring method and the traverse distance is determined
by the azimuth-scale method; definition. of all parameters of
motion by the Doppler method is more expediently done by

Senqgv the traverse point to an order of magnitude of the
traver e distance.

Thus, despite the fact that measurements near the
traverse are suitable for the energy relation, they are un-
suitable in a number of cases from the point of'view of attain-
ing high accuracy in measuring the parameters of motion.

From the examination presented, it follows that for attain-
ing higher.accuracy in defining a greater number of parameters
of motion with short-duration- measurements by range-measuring
and Doppler methods, the entire cycle of measurements is prac-
tically. divided into 2-3 times (or 2-3. separate measurements)
so that-one of -the times would coincide with the period of the
SV's stay in the traverse region, and the others would correspond
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to the rather large distance of .the SV from the traverse.

The data cited allow.us to judge the. informativeness of
different trajectory segments .in measuring during one pass in
the visibility range, assuming a linear approximation of the
measured trajectory segment. .Questions arise about what will
result if the measurements are carried out not during one, but
during several passes, and what the negative consequences of
the assumption about the trajectory's linearity will be.

The answer to the first question is clear. For measure-
ments during. one pass, two coordinates of the SV and two com-
ponents of its velocity in the plane which includes the trajectory
and the observer are defined. Measurements during another pass
allow defining the same four values in another plane which,
generally speaking, is not coplanar with the first.

In processing the results of measurements during the two
passes and computing a priori data about-the orbit, it is also
possible to select values for the initial conditions with respect
to any moment of time which better correspond to a more accurate
orbit and with which the SV, at the moment of passing the traver-
ses, will pass through the point found in the process of measuring
during separate passes, and will have a velocity at these points
whose components will coincide with the more accurate values of
the corresponding velocity components.

In this way, it is clear that the accuracy in defining the
parameters of motion on several passes will be higher, other con-
ditions being equal, with a more precise definition of the
corrections to the coordinates and velocity components on each
of the passes separately. The materials cited give the answer,,
with respect to more favorable conditions for defining the
different components of. the parameters of motion during separate
passes. The question concerning the choice of the most favor- /133
able o~serVation conditions during subsequent passes is a sepa-
rate problem which is outside the scope of the present investi-
gation. It can be expected that the.final .results will be more
precise if the angle of intersection of the plane. where the com-
ponents of the coordinates and velocity, made more accurate
during the.separate passes, are ordered, is closer to a right
angle.

The question about how much the data presented here differs
from the informativeness of an elliptical or circular trajectory,
with respect to the informativeness of the different sections of
the measured linear trajectory segment, also requires special
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examination.

Actual circular and elliptical trajectories will, naturally,
differ from the rectilinear trajectories which were discussed
with respect to their informational..properties, although a linear
approximation., evidently, allows us to judge rather reliably the
qualitative picture of phenomena which result from defining
circular and elliptical trajectories with low flight altitudes
and small eccentricities.

The results mainly give a qualitative idea of the in-
formativeness of different sections of the measured trajectory
segment and can serve as a starting point for a more detailed
examination of this question., for example, by methods of numerical
analysis.

In analyzing the results of an informativeness evaluation,
it is again necessary to consider the question of the choice of
the informativeness measures. At first glance, it seems that
the informativeness measure used does not always completely and
reliably reflect the informativeness of a trajectory segment,
since the measure examined is iot strictly connected with the
value of the decrease in the error.dispersion. Difficulties
with inverting the ACF second.derivative matrix can arise with
its use. In particular, in making, for example, range measurements
on a close traverse segment of trajectory-which..is more. informa"
tive for defining the traverse distance, we are not in a .position
to obtain any information about the two-dimensional or three-
dimensional vector of the parameters of motion due to the fact
that the matrix of ACF second derivatives, according to the
initial conditions in the given case, is not yielded by inversion.
Therefore, it seems that the most accurate representation of
informativeness and the actual picture .of the measurement results
are given only by the value of the decrease in error dispersions
in a measurement segment of. unit length. However, it is obvious
that similar doubts do not have serious foundations, and in
reality the informativeness measure, equal to an increase in the
measurement accuracy of a given parameter in a measured segment
of unit length, offer an objective and true concept of the
effectiveness of the measuring process.

The difficulties which arise n.inverting the ACF second
derivative matrix are reasonable and .explicable. What is more,
the indicators of informativeness examined.clearly show in which
conditions the matrix.of second derivatives willl yield an in-
version, in which it will not, and which measures must be car-
ried out for obtaining its invertibility.. Actually, returning

120



to the example cited, ",should note that, as the measure of
informativeness shows, the close traverse segment in range
measurements conveys information .only about one geometric value --
the traverse.distance, and every experiment for.evaluating the
errors in-defining two or.three coordinates are doomed to failure.
Therefore, inverting a three-dimensional, matrix of ACF second
derivatives is impossible.

On the other hand, as the informativeness indicators in-
dicate, it is possible to obtain information about two geometric /134
values -- the .traverse distance and the SV's position in the
trajectory -- by the given range meas"urements on the traverse
and at a defined distance from the traverse. Therefore, a two-
dimensional matrix of ACF. second derivatives of a. signal reut j
ceived during two spaced time intervals (near the traverse and
removed from it to the.value of the traverse distance),yield
an inversion.

From the.considerations cited, it becomes clear that the
informativeness measure used in a given operation offers the
possibility of a farily detailed, reliable, and objective evalu-
ation of a quantity of data which can be obtained in the pro-
cess of measuring a given trajectory segment, and.this measure
can be recommended for actual use.
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Chapter 6

ANALYZING THE PROPERTIES. FOR. DEFINING.DIFFERENT SYSTEMS
OF PARAMETERS.OF MOTION

6.1. Introduction

Among the many systems of parameters which uniquely describe
the SV's position in a phase range [26], We can distinguish the
following:

-- components of the coordinates and the velocity vector
(the initial conditions- of motion) of the .SV in some geocentric
or topocentric systems of coordinates .with respect to a defined
moment of time t0;

-- Keplerian and similar orbital elements;

-- canonical parameters.

The choice of a concrete system of parameters is dictated
both by the content of navigational (geodetic) determinations
and their method and by the geometric properties of space.
In particular cases, the properties of space are decisive.

In satellite navigation and geodesy using(a f. _xed' i i
system of reference, values .which define the spatial position
of the observer in the coordinate system selected appear as
the evaluated parameters.

Together with the .parameters used for features of the space-
time position of the SV or the observer, secondary values which
allow improving the accuracy of the navigational and geodetic
def~*gtions can appear as evaluated elements. Values for defin-
ing a different type of errors are related to these elements, and /135
also other constants which describe either the SV's movement or
the conditions for transmitting electronic signals.

The practical use of different systems of parameters is
due to th~iadOsire of obtaining the possibility of integrating
differential equations of motion for a broad class of orbits;
together with this, it is possible..to greatly increase the ac-
curacy of defining the parameters of motion .for fixed conditions
independent of the observer.

In the literature [16, 251, the choice of one system of
parameters or another is considered only from the point of view
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of using it. for predicting. the .SV's movement and .the compu-
tational difficulties corresponding to this process. More-
over, it is evident that.such .a choice should be made, taking
into account .those properties -which arise in the process of
information-processing for purposes of defining the selected
set of parameters. The fact that the simplicity of..' algorithms
and, in connection with this., the operation of defining and pre-
dicting the parameters of the".SV's motion, in the final analysis,
their accuracy, depends on the .choice of the parameter system
to a significant degree.

Not every system of parameters selected, used for describ-
ing the SV's motion in the entire range of their definition,
results in a matrix of ACF signal second derivatives according
to defined parameters which are sufficiently specified,
for solving an extreme problem by methods of successive approxi-
mations on contemporary computers.with a completely defined
capacity. Parameters in the form of components of the coordinates
and velocity vector at a fixed moment of .time easily leadlto;$.
a concurrent solution. However, in solving a number of prac-
tical problems, the most suitable parameters for numerical and
qualitative analysis are not the set-of parameters which des-
cribe the initial conditions of motion in a geocentric rectangular
or other equatorial or orbital systems of coordinates, but a
system of osculating Keplerian elements and similar systems,
since they give a more complete representation of the geometric
characteristics of the orbit and its orientation in space. It
should be noted that for examining the question of the dis-
tribution of the Earth's gravitational field in the space..sur-
rounding it, the set of osculating elements in the form of
Keplerian parameters of orbit, evidently, is a unique system
which offers the possibility of solving the. problem posed [7]
more simply. Moreover, the use of slowly changing parameters /136
which osculating. Keplerian elements represent as the epheieris
of orbital radio-navigational or geodetic points for purposes
of autonomously determining moving ground, surface or space
objects draws special attention, since it allows significantly
decreasing the size of the long-term storage of the on-board
memory device and simplifies transmission. of ephemeral infor-
mation.

With small eccentricities in the elliptical orbit or in-
significant angles of. deviation in the mathematical relations
which describe the differential equations of the SV's movement,
the denominator approaches zero. This leads to the fact that
accurate integration of differential 'equations of motion in the
ranges 'of definition of the parameters indicated becomes com-
plex or even impossible. As a consequence of this, defining the
system of parameters selected will be accompanied.by an increase
in errors.. Moreover, as we will show below, the correlation
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matrices of errors in defining. the parameters of motion are
characterized by the fact that., in proceeding to the ranges of
parameter definition..mentioned above., the numerical values of the
definition errors are.significantly increased.. Deterioration
of the definition accuracy in the given case is due to the
properties of the parameters' space as systems of reference
accepted for the physical representation of the SV's position
vector.

In order to. solve the problem of making the parameters
of motion more precise with the accuracy required for a broad
class of orbits, the necessity arises in practice of using other
elements of motion in place of those which produce many systems
of parameters [6, 7, 21, 22,.28]. - Although in much of,the litera-
ture on celestial mechanics and the theory of a1SVi',sflight,
it is shown to be possible to integrate the differential equa-
tions of motion with the introduction of new systems of para-
meters, qualitative and quantitative analys&s of changes in
definition accuracy,due to the introduction of the new systems
of parameters and changes in their values in the entire range of
possible occurrences, could not be produced. Therefore, the
phrpose of the present chapter will be to examine the features
for defining the SV's trajectories of motion by using different
systems of parameters, especially, as we showed in the previous
chapter,- since the potential accuracy of their definition is a
function of the composition of more precise parameters. Moreover,
considering the question of the accuracy in evaluating the SV's
position vector in different systems and the choice of a more
accurate system of reference for determining the precise proper-
ties of the.measurements systems is reasonable. 37

Considering. that a linear value (a continuously changing /137
range in the observation process) is the informative parameter
of the signal received, it is useful to describe the exact pro-
perties of the measurement systems by the. linear errors of the
radius vector components and the velocity vector components or
their equivalent values in a rectangular system of coordinates.
Furthermore, in defining the parameters of motion, the specially
chosen rectangular system of reference will be called initial.
The choice of a rectangular coordinate .system as initial is
dictated -y the fact that for defining the parameters. of motion,
additional.transformations of the matrices of the ACF signal
second derivatives are not required. .Moreover, in a Cartesian
rectangular system, the covariant and contravariant localized
basis vectors coincide with the basis vectors of the system,
whereas the localized basis vectors in orthogonal curvilinear
systems of .reference are functions of; a point. A characteristic
feature of rectangular systems is that the Cartesian cootdinates
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of any position vector and .their differentials with respect to
different-systems are connected..by linear functions. Linear
coordinate.transftrmation matrices and their differentials are
identicaly(qual and represent orthogonal rotation matrices.
Therefore, for all rectangular systems.of reference, the volume
of the dispersion ellipsoid for defining the parameters of
motion remains the same. In using other systems of reference,
it is necessary to know their geometric properties and differ-
ence in comparison with rectangular systems.

5.2.. Transforming Coordinates and Their Differentials. Tran-
sition Matrices

Any system 6f$parameters of motion selected serves for
describing the same principle of motion of a moving object.
Therefore, naturally, a rigid UiqU n ee1tionship exists
between the different systems which can be expressed by defined
mathematical relations. The latter offers the possibility of
transforming errors in defining the parameters during the
transition from one system to another. However, prior to pass-
ing to an investigation of the.. accuracy in defining the velocity
vector in different parameter areas, .we should note some funda-
mentally important conditions which pertain to the differences /138
between transforming coordinates and their differentials and
define the relations which describe these transformations.

Definition error transfrmations in using different systems
of parameters (coordinates) as a system of reference for re-
presenting the position vector of the SV 'or the terrestial posi-
tion of the observer are characterized by linear transformation
matrices for the differentials of the position vector components,
and not.by coordinate.transformation matrices. The connection
between these is expressed by means of nonlinear functional
dependencies whose form is defined in each concrete case by the
composition of the parameters evaluated.

We will assume that the SV's position vector or that of
the terrestial observer in an 'area of m-dimensional space can be
given by. means of different systems of independent parameters
q and g; then each point (ql, q2, .. , qm) of the m-dimensional
space of the initial system of parameters q can be fixed corres-
ponding to the ordered set m.of real numbers. gl, g2, ... , gm,
which represent the value of the components of a finite para-
meter system g. The elements. gi of the position vector defined
in the range of finite parameters g are connected with compon-
ents gj of initial system q by the relations

g1 = g(q, q2, .... qm); g 2 =g 2(ql, q 2,' qm)

S.; = gm(ql, q2, ... qm), (6.2.1)
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which in the position vector's.definition range. are everywhere
equivalent, -and the Jacobian.of the transformation is not
equal to zero:

0(g, g2.... gm) 0
a (q,, q 2 ... , q ) (6.2.2)

It is characteristic that if equations (6.2.1) define the
relation between the Cartesian systems of coordinates, generally
speaking not rectangular, i.e.,-they describe the relation between
the components of the observer's position vector with respect to
different Cartesian systemsg)of reference, in this case -- and
only in this case -- all equations are linear and can be written
by means of a linear transformation operator

gtr = Jtrqtr" (6.2.3)

Transformation matrix J+_, in the general case, is defined by
the product of three factors, each of which is an orthogonal
rotation matrix R(T),, which describes the rotation of the initial /139
system of coordinates at angle t around one of its axes. The
modulus of the Jacobian.of.:the rotation matrix is equal to one.
In this connection, since the elements of matrix Ji are not
functions of the components of vector gt, nor of the components
of vector q.4, for transforming the. diffbrentials of the coor-
dinates, the relation will borrectly be

dgtr = Jdqtr. (6.2.4)

In us ing Cartesian systems, the linearity of relations
(6.2.1) is preserved,.. and where the. defined position vector is
complete, six-dimensional, i.e., more precise definition of not
only the coordinates, but also -the components of the velocity
vector is effected. However, in this case it is better to
refer to transformations of the position vector components and
their differentials instead of to transformations of the co-
ordinates and their differentials, since different systems of
parameters aan be used with the.use of.,a. defined. spatial co-
ordinate system for the characteristics of the position vector.

126



Moreover, the delimitation allows.us to construct .a sharp bound
between the the transformations.of .parameters which ,characterize
only the spatial position, and parameters...used for. describing
the space-time position of moving objects. We should add that
in the majority of cases, coordinate transformation matrices
and their differentials are constituent elements of the formulas
for transforming the components of a six-dimensional position
vector and their differentials .for representing a given vector
in different parameter .areas as systems of reference. Therefore,
such a delimitation significantly facilitates further discussion
of the material.

Transformations.of the components of a six-dimensional
position vector and their differentials with respect to different
rectangular coordinate systems are described by quasi-diagonal
matrices whose diagonal units are direction cosine matrices

Wcr - 0 10 If qtr

dg.tr I 0 Jtf dqtr
(6.2.5)

where 9tr and gtr are vectors of the velocity components in the
rectangular coordinte systems studied; dqtr and dgtr are the
vectors of the velocity components' differentials.

Inverse transformations in the entire area of possible oc- /140
currence of the position vector are allowed for formulas (6.2.3)-
(6.2.5). In this connection, the linear operator of the inverse
transformation is identical to the transposed value of the direct
transf6rmation.

In the general case, expressions (6.2.1) are non-linear with
respect.to components qj by relations:

g = g(q),

whose complexity in selected system g is' a function of the com-
positionof parameters. q, used as the initial system's components.

Simpldr formulas for transforming.the coordinates are the
relations which define the relation between. the components
of Cartesian rectangular and universal systems whose origin
and basic planes.coincide.
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Thus., for a cylindrical coordinate system with components

q, = I]P X, ~4 c 1 this transformation. takes the -form of

gtr =R z - Qc ,  (6.2.6)

where g~r = I lx y z I is the position vector in a rectangular<
system of coordinates;.QT = Ip 0 z J is the vector definhed l59
the linear.components of the cylindrical system of reference
and which describes one of the coordinates.of the lines of the
observer's position; Rz(-Xc) is a matrix which describes the
transformation of rectangular coordinates in rotation. The
positive value of argument Xc describes, counter-clockwise rota-
tion.

For a spherical system with components q = Ir I J
the transformation takes the form of

gtr = Rz(-Xs)Ry(-)Qs, (6.2.7)

where Rz(-Xs) and Ry(- ) are rotation matrices; QT = IrK o0 Oi
is the linear coordinate, of. a.:spherical system of reference.

The relationship between..the coordin'aes. of, the Cartesian
rectangular and universal geodetic systems..of reference with com-
ponents g = J IH L Bgl is defined by the relation

(6.2.8)

which can be represented as a transformation of the coordinates /141
of. some..quasi-spherical system to rectangular systems. It is
characteristic that .the position of the origin and basic plane
of the quasi-spherical system does not remain constant. For
the parameters accepted (of semimajor axis a3 and eccentricity
e3) of the reference ellipsoid with respect to whose plane alti-
tude H is measured, the position of the origin and basic plane of
the quasi-spherical system-of-reference changes with a change in
geodetic latitude Bg. In this connection, the basic plane of
the quasi-spherical system is shifted ,parallel to.plane OXY of
the rectangular coordinate system, and the origin is along axis
OZ. This-.shift is described by vector Q= 10 0 - Ne3 sin Bg I.
Its maximum value is equal to.+ .a3 e3/ -e. Linear coordinate

QT = IN + HO 0 11 represents the sum of the altitude H and the
radius of curvature N = a3/v l-*d sin 4B in the plane.of the
reference ellipsoid along the first vertical at the observation
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point.

Relation .(6.2..8) can be replaced by the following ex-
pression.which is equivalent to it:

g, = R (-L)Ry(-B )Q i

where QT 0 = j N(l-e 2 sin 2 B + HO - Ne 2 sin Bg cos Bgll.
go 3 ,) ""Bg )3H O i n

Relations (6.2.6)-(62~.8) can .serve as the basis for ob-
taining both the formulas of coordinate transformation for
the transition from different curvilinear to Cartesian systems
of reference by means of supplementary linear operators, and
of linear operators for transforming the coordinate differen-
tials.

Thus, in examining cylindrical and.:spherical orbital sys-
tems of reference whose basic.planes are combined with the
plane of the os culating ellipsis, and the polar axes at the
moment of osculation, coincide with the sense at the ascending
node, formulas for transforming the coordinates are defined by
the following relations:

= R, 2--") R, (- i) R, (-- t) Q (6.2.9)

gl_9 - z (-- ) R., (--) R, (-- It) Ry(- Q)Q.

in which the arguments of the rotation matrices represent the
values: u - the latitude argument; i - the orbital:plane devi-
ation; 0 - the longitude of the ascending node; -. the latitude
with respect to the orbital plane.

Formulas for transforming the differentials of the coord',' /142
inates for curvilinear systems of reference are defined by
the expressions:

dgtr= Rz (-c) WRy (dq

dgtz= R (- L) R (--Bg) Wgdq g

(6.2.10)

The differentials are interlinked by means of the linear
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operators

Jc= R. ( E) Wc RcW
J-,s= Rz (--R RY (- ) W--s= Rrs Wfs, C>
Jg R,(- L) R (- B)-Wg- 1 W

(6.2.11)

in which are included matrices Wc, Ws and W ), which directly des-
cribe the transformation of coordinate differentials of the
coordinate systems examined, in contrast to the formulas for
transforming the differentials. of Cartesian systems together with
orthogonal matrices of rotation Rc, Rs, and Rg. In .the special
case of converting from coordinate errors in curvilinear (cyl-
indrical, spherical and geodetic) systems to errors in the com-
ponents of Cartesian rectangular systems, the direct transfor-
mation matrices Wc, Ws, and W describe the transformation of
angular parameter errors in linear systems and are defined by
the following relations:

100. I1'  0 0I
W 0 pO0 , W~- 0 rcos 0 ,
00 1 00 r,

1 I0
W = 0 (N+ H) cos B 0
g 0 0 N + H (6.2.13)

S N(1 - e3)
where ,(1 - e2 sin 2 Br)

. hnnverse transformations.in the entire range of possible co-
ordina te assignment with the exception of the specific points
in which matrices W , W s , and Wg become specific, are permitted
in. formulas (6.2.10. For ,this .reason, with a constant value
of the linear error.s:in.eiaiii~ ~~to. approaching, singular
points, errors in.:the angular, components of vectors dqc, dqs and
dqg increase, which is seen from .the following relations:
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d, (dy cos Xc - dx sin L,

dis, = (dy cos .4 - dx sin )s,),
r. cos

dy = [dz cos y - (dx cos X,, + dy sin ;.) sin y],
r

dL = (dy cos L - dx sin L),
(N + H) cos Bg

dB% N [dzcos B-(dxcosL+dysinL)sinB. (6.2.13) /143

Transformations of the position vector in converting from
a curvilinear to a rectangular system of coordinates in a
partitioned matrix form of notation are defined by the relation

S R O q I-
gtr 4 (6.2.14)

in which under matrices R, J, Q and q, one of the sets of
matrices Rc, Jc, Q and qc or Re, Js, Qs and qs or Rg, J, Qg and
qg, depending on which of the curvilinear coordinate-systems
is used, should be understood. Vector q is described by the
velocity components of a curvilinear system. .Thus, in trans-
forming the coordinates of a spherical system, the vector in
question is determined by the function qs = 1]rK Xs  *

The formulas for transforming the differentials of position
vector components in converting. from curvilinear systems of
reference to rectangular.systems can be.defined .in a general
form by the expression

dg EO R V Wldq ' (6.2.15)

in which the outer diagonal.,block V(Vc, Vs and V , corresponding
to cylindrical, spherical and geodeticsystems o? reference)
of the matrix of direct .differential transformations describes
the transformation of errors in angular velocities into linear
velocities, resulting from errors in the coordinate components
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of vectors-dgg, dg c and dgs.. Matrix R.has the same sense as in
relation (6.2.14). Matrix W is defined by one of the expres- /144
.sions of (6.2.12) with regard to the curvilinear system used.
Transformationsdf-the first two factors of the right part of
expression. (6.2.15) represent noneother than the transition
matrix whose diagonal blocks are definedby relations (6.2.11).
The outer diagonal blocks (Vc, Vs , and V ) of the direct trans-
formation matrix of differentials which simultaneously arezthe
outer diagonal blocks of the transition matrix, can be defined
by means of the expressions

v, = , p 0
0 0 0

0 -- r ' cos0 -- s
c

Vg = s cosq' r'cos - rs sinC - r sin 

9 rs s sin pcos c r

0 - (N +H) Lcos2 B ,- (N< H),

V,= L cosB- Hcos -(N._H)B,_nB (N,+H)LsnB,

S (N+ H) L sin B os I H+N 2

(6.2.16)

where N = 3. N e sin B, cos B (1 -e2 sin '
2 B.

The inverse transformation, of the position vector component
differentials can be represented in a general form by the
function

dq 11 W-I 0 R 0

dq WI= W -, ,1 0 R' I dg I' (6.2.17)

in which the matrix element U(Uc, Us and Ug, corresponding to
cylindrical, spherical and.geodetic systems of reference) is
defined by one of the relations

0 0

U,i = - -e- P 0
P P

0 0 0
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0 SCOS cp

S Ilnp-os (

s Ss

-"- sin -

(6.2.18)

0 L cos-B B
g g

L (N,+H)B, sin B .- Hcos B, L
Ug= N+H (N+H)2 cos 2 B N+H

SL sin H+ N 2, B
S N, -- H i BI g (N, + H1 )2

Matrix W-1 is inverse with respect to matrix W of expression
(6.2.15). Therefore, relation .(6.2.17) is valid within the
range of the SV's position vector definition in which matrix
W is ordinary.

Using relations (6.2.15) and (6.2.17), it is possible to
define the relation between the differentials of the position
vector components in the transition from. the kth to the jth
curvilinear system of reference. This relation is described
by the expression

d dq U W'1 0 R RK

X Wk 0 dq
V, W. dq* | (6.2. ,9)

which .is valid if the. polar axes of both systems coincide, In
the transition from a spherical to a. cylindrical system, relation
(6.2.19) is significantly simplified, since the product of
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T Rs is identically equal to rotation matrix Rv(-).

Formulas. (6.2.15), (6.2.17) and-(6.2..19) describe the
transformation of-. the .initial conditions of motion with respect
to different coordinate systems whose classification and enumer-
ation can be found in 126].

Let us proceed to systems of parameters which include Kep-
lerian and similar orbi-tal elements. In this respect, we
should consider that in all cases where Keplerian and similar
parameters appear as compqneits of the SV's position vector, /146
as a rule, the coordinates and components of the velocity vector
are used as the initial coordinates for all methods of naVi-
gational and geodetic definitions in an inertial geocentric
rectangular system of reference [7]. Therefore, it is necessary
to obtain the relations which connect the initial conditions
of motion in an inertial rectangular coordinate system and their
differentials with the corresponding Keplerian or similar elements
of orbit. These relations must be suitable for applying differ-
ent operations of matrix. calculus.

Furthermore, it will be assumed that all systems of para-
meters of SV motion examined describe its position-in m-dimen-
sional spaces at some moment of time to. Without losing
generality, we can assume that atmoment to the SV's movement
occurs according to a purely Keplerian orbit. In this con-
nection, the trajectories of motion are represented by a plane
curve for defining the SV's position in which other instan-
taneous arguments -- true u and eccentric E anomalies, average
latitude M + w, etc., can be used instead of time t. Usually,
the origin of the instantaneous argument is related to the SV's
moment of passage of the perigee or the ascending node. If
we take into account that some Keplerian and similar orbital
elements are also directly connected with -the reference point
of an instantaneous variable, then in defining the inter-
relationship between the initial .conditions of motion in rec-
tangular coordinate system OXYZ (Fig. 6.1) and the Keplerian
or similar .parameters, it is necessary to introduce some inter-
mdediate systems of. reference. Thus., in using Keplerian para-
meters of orbit which require using-an instantaneous variable,
whose origin coincides with the moment of the SV's passing the
perigee, it is expedient .to examine a geocentric orbital rec-
.tarngular system of coordinates OXIY 1Z 1, whose axis OX1 coin-
cides with the direction on the perigee, as an intermediate
system. At the same time, three angular elements i, ,q and 0
of a Keplerian parameter system which describes the orientation
of the orbit in space, are simultaneously elements of the
direction cosines between the axes of coordinate systems OX1YiZ1
and OXYZ.(Fig. 6.1). The three other orbital parameters a, e
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and MO define the conic section .regardless of the coordinate
system.selected and, describingthe space-.time position of
the SV in.orbit, give a comprehensive idea of its motion in the
orbital system of coordinates OX1YlZl.

In examining, systems of parameters similar to Keplerian /147
systems and canonical parameters.of motion, taking into con-
sideration that they all have a single functional dependence
relative to Keplerian elements of orbit, a geocentric system of
rectangular coordinates must be considered as.the initial sys-
tem, and a sys.tem of Keplerian elements i, w, 0, a, e, MO as
the intermediate system.

z /x,

S//

x \

Fig. 6.1. Geocentric ,,qd atorial
and orbital. systems of coordinates.

For defining the interrelationship of the components of
the SV's position. vector in the area- of. initial conditions of
motion gt = lix y z i x ll in an inertial rectangular system
of coordinates OXYZ and in the area of'Keplerian elements of
orbit, qT = ii S2 a e MO), we will represent vector g by the
following expression (Fig. 6.1):

g = GHSgl (6.2.20)

where.g = Ilxl yl Zl xl Y1 lll is the SV's position vector in
the region.of initial conditions. in a geocentric-orbital rec-
tangular system OX1 YIZ1 ; G, H and.S are matrices of a quasi-
diagonal form whose diagonal blocks are rotation matrices
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Rz (-), Rx(-i) and R,(-w), respectively.

The elements.of. matrices G, H and S are defined only by the
Keplerian parameters of orbit which describe its orientation /148
in the area of a system of-coordinates OXYZ. Vector gl is a
function of.-the intraplanar .Keplerian elements of orbit and the
instantaneous argument selected. The representation of vector
91 is significantly simplified if a value of eccentric E or true
0 is chosen as the argument. Taking this into account, we can
describe vector gl by an expression which is a function of the
eccentric anomaly:

a (cos E-e)
a I1/-e2 sin E

SI sin E'
a 1-e cos E

g - l-e cosE

a 1-ecos E
0. (6.2.21)

where a is the semimajor axis .of the ellipse; e is the eccen-
tricity of orbit;p is a coefficient equal to the product of
the gravitational constant in the Earth's mass, and also a
function of the true anomaly:

a(1 - e2) cos

+ ecos 1

a(1--e2 ) sin a

1+e cos 4

0

/ P e - cos

a Vl--e
0

(6.2.22)
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Thus,. expression .(6.22.20) -defines.. the functional. dependence
of. position..vector g- on the. components ..of ..vector q. . For finding
the formula .for transforming the differentials of position
vector components- g and q.,..it is- necessary to define the
transition matrix, the. P-matrix, of partial <derivatives of
coordinate components and.the velocity vector in system OXYZ
by Keplerian parameters of orbit. It.is possible to represent
the indicated matrix as a derivative of position vector g
according to position vector q [7, 14]: P = 6g/6q. In a /149.
form more convenient for study, the transition matrix can be
written as

dg dg dg dg dg dg
di d dS2 da de OMo (6.2.23)

in which each element P , representing a six-dimensional
vector (matrix column), .aking .into. account relation (6.2.20),
is defined by the product of several matrices.

Thus, the first three elements of. expression (6.2.23) are
defined by the following relations:

dH dSP.I=G Sg , , P.2 = GH g,,di 0,
dG

P.3 = OHSg l , (6.2.24)

which can be easily calculated if we consider that the first
three factors' of matrix P are quasi-diagonal matrices, and the
differentiation operations, which do not change the structure,
result in their- simplification.

The last three elements of matrix P, defined by expression
(6.2.23), can be represented..by the relations.

P.4==-GHS 'dg, P.s GHS dg,
da de

P.6= GHS dg1
d. .o (6.2.25)

In this .connection,. allowing.--for expression (6.2.21)., the deri-.
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vative of..position..,vector g..1 by: scalar a is. defined by the func-
tion

cos E - e

J/1--e2 sin E

0

gI_ 1 I/-- sin E
da 2aV a 1-ecos E

/  iI -e 2 cosE
2a a 1-ecos E

0

(6.2.26)

Vector gl is a function of the eccentricity, both directly and
through the eccentric anomaly. Therefore, for finding the
derivative 6gl/de, it is necessary to define the partial dif-
ferential of position vector g1 : by scalar e:

deg,-- de + dl de,dge o dEde (6.2.27)

whose component elements are a partial derivative of the eccen-

tric anomaly with respect to the eccentricity. The latter can
be defined by differentiating a Keplerian equation:

E-e sin E= M,

OE dE
E- sinE - e- cos E= 0.

de de

(6.2.28)

Whereby we have

OE sin E

de 1-ecosE (6.2.29)
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a (cos E ± e) cos £ - 2
1 -e cos E

(cos E - e) sin E
a

0g_ 0

de 7 (2--ecos E) cos E- e sin E
a (1 - e cos E)

/ (2cos E-ecos 2E- e) cosE+ e2 -1

a 1/1-e2(1- e cos E)
0

(6.2.30)

The partial derivative of position vector gl according to mean
anomaly MO .is expressed by the product of. two factors, gl/dE
and dE/dM0 . The latter can be defined by means of a differ-
entiation corresponding to. expressions (6.2.21) and (6.2.28);
Therefore, the relation is direct

sin E-a
1---ecosE-S- e cosE

V -e2 cOs E

-1 e cos E

cig1  0
Mo cos E - e

S-a (l-ecosE a

(_"/ 1i/ l--e2 sin E

- (1-e cosE)'

(6.2.31) /151

Representing transition matrix P..in the form of a partial deri-
vative of position vector g, defined.by, the product of the
matrices according to vector q, whose components appear as Kep-
lerian parameters., we .can. easily :define .any of. the rows of the
matrix and any of its elements. Thus, the kth row of matrix P
can be .expressed by the following function:
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P. - k -  (Gk. HSgl),dq q (6.2.32)

where Gk is the kth row of matrix G. Taking into account the
principle of differentiating scalar quantity gk according to
vector ] [14], expression (6.2.32) can be reduced to the relation

Pk. Idgk dgk dg dk dgk (g
di dw 02 da de OMo (6.2.33)

whose lements, according to the form of notation, can be re-
presented by formulas similar to the functions.which define
matrix column Pj of expression (6.2.23). However, their es-
sential difference is that Pj - are.vectors, whereas the
elements of matrix Pk. are scalar values, functionally dependent
on the components of ,vector q. Anbther distinctive feature is
that matrix row Gk, or its derivative 6Gk/60, stands in place
of matrix G or its derivative with respect to angle 0. In cor-
roboration of the above, we will write the relations which
define the elements)of matrix row Pk.:

dH OS
Pki =k. - Sg,; Pk~ = Gk. H - gl,

di da
Pk3 = HSg Pk4 G.HS ,

Pk5 = Gk. HS 'g, pk6=G.HS
de dMo

(6.2.34) /152

Expressions (6.2.34), -which allow defining any of the elements
of transition matrix P, show that its; elements define the complex
functions of the components of vector q. The appeaacefo :the
elements of the differential direct, transformation matrix
as a function of the components of the initial, system of para-
meters is characteristic of all non-orthogonal matrices, includ-
ing the matrices described by. exprs:sions (6..2.15) and (6.2.19).
However, Vthe complexity of this fundtion is defined both by
the components of the initial and terminal systems of parameters,
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which can be seen in the example which compares relations
(6.2..15) and (6.2.19). ,The property referred to of elements of
nonorthogonal .transformation matrices leads to the fact that
their determinants also are a.function of. some components of
the initial system of parameters. Therefore, the magnitude of
the determinants does not remain constant with a change in the
range of parameter definition; at singular pQints, it is equal
to zero.

Using: expression (6.2.20), and also the general, and some
special, properties of orthogonal matrices, the properties
of the derivatives of orthogonal matrices according to the ang-
ular arguments and their derivatives, it is possible to represent
the formula for transforming the differentials of a six-
dimensional Keplerian parameter vector in initial conditions of
motion in a rectangular system of reference OXYZ by the relation

dg R6 0 W1 W3 dq
dg, 0 R o W2 W, dq,dg o R W d 2' (6.2.35)

where dgT - Idx dy dzll; dgo = jdxdy dz lare differentials of
the coorainate and velocity components of initial conditions of
motion g; dq T =' I Idi dw d I ; dqT= I Ida de dM - I1 are dif-
ferentials lf the anUi r dri raorbital Kep erian elements;
RK = Rz (-) R(-i) R(-w)is an orthogonal coordinate transformation
matrix in going from system OXjY1Z 1 to system OXYZ; W , , W23,
W4 are blocks of' matrix WK for the direct transformation of dif- /153
ferentials of Keperian parameters into differentials of linear
coordinates and components of the velocity vector.

Matrices W3 and W4 , representing coordinate and velocity
component derivatives of the vector of initial conditions of
motion gl in orbital system of reference OX1Y1Z 1 , according to
the intraorbital Keplerian parameters a, e and MO ,

) ) (6.2.36)

are defined by the corresponding. components of expressions
(6.2.26), (6.2.30), and (6.2.31). If a true anomaly is used
as the-instantaneous variable, then the matrices shown are ex-
pressed by the functions
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(1-e 2) cos a(h+ sin2 1) asin 4

h h V f1~e2

W,= (1 - e2) sinO a sin 20' a(e+ cos5)

h 2h vI-e2

o 0 0 _J

(6.2.37)

sin 4  e+(l+h)cos sinO h2 cos .

2a 1/ 1-- e2  (1-e 2 )3 1  (1--e2 )2

W.,= e cos 1 h cos 2 - sin2 - h2 sin 1/

2av1l -e2 (1 - e2)3/2  (le 2 ) 2

0 0 0

where h=l +e cosv. In this connection, the first, second and
third columns of .matrices W and W4 are identically equal -o
relations (6.2.26), (6.2.30? and (6.2.31), if in the lattePr the
eccentric anomaly changes to a true anomaly.

Matrices W1 and W 2 can be represented by expressions

0 - sin e -- sn 8 cos i

Sa(1 -e 2 )

1 ---e cos '

sin (o, + 8) 0 - cos (w, + +)

0 -(e cos4) -(e+ cos )cosi'

SW= 0 - sin --. sin i cos i

cos (to )) - e cos, 0 sin (o+a )+e sin o

V a(l-e 2) ' (6.2.38) /154

whose elements are defined by.. the coordinate or velocity com-
ponents of, vector gl, by the angular. distance of the perigee and
the deviation of the orbit.

A characteristic of the. differential direct transformation
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matrix is that its elements are not functions of the longitude
of the ascending node and are defined by intraorbital elements
a, e, MO and two angular parameters,.i and w.

Expression (6.2.35).shows that..the transition matrix R,
representing a linear transformation operator, is defined by
the product

P = GHSWK, (6.2.39)

one of whose factors is the direct differential transformation
matrix WK.

Transition matrix P describes the transformation of posi-
tion vector component differentials when Keplerian elements of
orbit are used as the initial system of parameters. If the
initial conditions of motion in a rectangular system of re-
ference OXYZ appear as the initial system of parameters, then
the differential transformation is defined by the expression

dq = WIsTHTGTdg, (6.2.40)

which is direct in all regions of parameter definition with the
exception of the special points in which Matrix WK becomes
singular.

The transformations examined show that the connection be-
tween errors in the components of the SV's position vector or
the terrestial observer, with respect to the different multi-
dimensional parameter spaces, is defined by a linear operator
of a differential transfnmation in the transition from one
system of reference to another. Subsequently, the. differential
transformation matrix which .describes the. transformation of
errors in transition, in contrast to the coordinate transfor-
mation matrix, will be called the transition matrix. The trans-
ition matrices which connect the differentials of parameters of /155
motion in different systems of reference with unequal dimensions
of physical coordinates, together with orthogonal matrices, also
include nonorthogonal .matrices..which describe .the direct dif-
ferential transformations of.parameters with non-identical dim-
ensions. Being linear operators, transition matrices describe
the transformation of .coordinates-in the case -- and only in
the case.-- where,\first, the coordinate systems examined are
Cartesian (generally speaking,. optionally rectangular) and second,
the position vector's components only..describe .the location of
the SV or the observer in the chosen system of reference.
In describing. the transformation of errors in the transition
from one region of parameters to. another .and indicating the
special features of these areas, the transition matrices play
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in problems of .defining the parameters of motion.

5.3. A Quantitative Approach to Evaluating Properties for
Defining Different System :of .Parameters

In evaluating the accuracy and definition of a velocity
vector in the field of the signal. received with regularly
changihg parameters, operations for finding the first and
second ACF signal derivatives according to the components of
the vector of evaluated elements at the point of their a priori
knowledge, and solution of equations (3.1.7) and (3.1.8) are
related to the significant operations of time-space filtration.
Correlation matrix Bg for defining corrections to precise para-
meters g in the case of the absence of matrix B a of errors in
a priori data coincide with correlation matrix gB , for measure-
ments, and with accuracy to constant factors, is numerically
equal to the inverse matrix of the ACF signal second derivatives.
Thus, for a signal with.regularly changing amplitude and fluc-
tuating initial phase, the corrections vector Ag and correla-
tion matrix Bg are defined by the relations

N

Ag B [ Z (ga) - (g")N1 2 (6.3.1)

Bg No Zo (g ) -- g
k-1

(6.3.2) /156

in which the signal integration in defining. the derivatives is
conducted within the limits of each of the coherence intervals,
and summation is: at all intervals. N. The derivatives are taken
according. to componentvectors g at the point of their a priori
value.

Subsequently, matrix Wg is necessary to define the expres-
sion

N-o -1 2

(6.3.3)

and also the matrix which is inverse to correlation matrix Bg.
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It will be designated by Ug.

If an evaluationof accuracy is carried out at first on the
basis of the time-space filtration of,..the signal received and
corrections Ag to initial. parameters. g (the initial conditions
of motion in a. rectangular .system of reference) are defined by
means of:gsolving equations (6.3.1) and (6.3.2), and then the
problem is posed of obtaining evaluations of final parameters
q; the corrections vector Aq can be calculited on the basis of
the transformation formulas shown above:

Aq = P-1 Ag, (6.3.4)

where P = 6g/6q is the transition matrix connecting the dif-
ferentials of. the..position. vector components given in the ini-
tial and terminal parameter areas.

The error correlation matrix Bq for defining parameters q
can be cal dlated by transforming correlation matrix Bg [15,
19]:

B,=P-'B (P-1 )

(6.3.5)

In directly making terminal parameters q more precise
in the received signal field, the correction vector Aq and
the correlation matrix are defined by the expressions

N
A --- B, Z (q.) - (q)
No -1 2 (6.3.6)

Bq - Z( (q) - (qa)
B _ (6.3.7) /157

Taking into account that both. systems of parameters g and
q describe the space-time position...of .a material object moving
according to the same principle,each of the terms of the sum
of first and second derivatives according to the components of
vector q. can be represented by the relations
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Z((qP)---g'g (q) p Z( ) - (g ],Sa). , (6.3.8)

Zq(qa) E (Eq )= PT [Z (g"a)- --(-r (g.)] P.

.- (6.3.9)

The value of the elements of transition matrix P is_ not
a function of the coherence interval. The terms in brackets,
representing derivatives according to the ements of vector
g, are functions of its components, given by its a priori
values. In substituting expressions (6.3.8) and (6.3.9) in
formulas (6.,3.6) and (6.3.7), .the latter can be reduced to
relations (6.3.4) and (6.3.5), respectivelyi Therefore, it is
possible to conclude that, regardless of whether the terminal
parameters of motion q are evaluated directly or. are obtained
by means of reducing the results of evaluating initial para-
meters g by using transition matrix P, corrections Aq to the
precise parameters and- their correlation matrix Bq are always
identical.

The error vector correlation matrix can be used as a
property in evaluating the exact properties , defining the
parameters of motion. However, in practice, the use of such
an exact property [19]. as the correlation matrix determinant
whose value, correct to constant factors, is defined by the
volume of the multidimensional error ellipsoid'in eviluating
the chosen set of parameters, is more convenient. The con-
nection between the volume of the error ellipsoid and the
determinant can be represented-by the following function [15]:

(6.3.10)

where m is the dimensionality.of the ellipsoid, defined by the
dimensionality .of the multidimensional a ce of parameters g;
F(m/2+1) is the gamma. function.

In this connection, .if the volume.of.a multidimensional /158
dispersion. ellipsoid: in-the, space. of. the. selected. parameters
is used for evaluating the exact property.for defining the para-
meters 'of' motion, for a quantitative evaluation 6,i'the pre-
cision properties and charateristics for defining different sys-
tems of parameters of motion, it is sufficient to know the
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determinant of the error.-.correlation matrix Bg for defining the
components of the initial system.of parameters g and the deter-
minant of the transition.matrix P, since knowledge of the latter
offers the possibility of computing the determinant of
error correlation matrix. Bq in evaluating terminal parameters
q. With the same dimensionality of, multidimensional spaces of
parameters g and q, the relation is correct

det Bq = det Bg/(det P)2 . (6.3.11)

Thus, in m-dimensional spaces with the same metricesin the
range of the parameters' definition, where the value of the
determin~int of the ACE signal second derivative matrix is high,
the volume of the dispersion ellipsoid is small, which attests
to the high accuracy in defining the parameters of motion.
The xeverse is also true: In an .area of space where the deter-
minant of matrix U is small, the accuracy of the determinant
is small, and the aefinition accuracy is not high. Therfore,
in establishing ranges within the limits of which Ug + 0,
we can judge the distribution of measuring complex areas in
using the sekected set of parameters.

We should add that, since at present -the solution of sys-
tems of nonlinear e~u&tions with respect to the defined para-
meters is done by a method. of successive approximations, the
solution process will contain a smaller number of itera bn
cycles the larger the determinant of the second derivative
matrix is. With a decrease in the determinant, the velocity
of convergence becomes less; in this connection, for a con-
vergent solution, more precise a priori data for forming the
reference signal are required. A solution in the area of the
parameter definition in which det U -+ 0 becomes especially
difficult. Theiagnitude of the deerminant of matrix Ug is a
function of the distribution of elementary receiving antennas
in space, the statistical characteristics of measurement
errors, the geometric conditions of observation of the SV, and
the choice of a system of initial parameters used for describing
itsz space-time position. In defining. termi al parameters q,
the nature of the change in the determinant of ACF signal second
derivative matrix Uq, being a function of the values of defined /159
components q, can be studied:by means of ..the transition matrix

det U = det:Ug(det P 2. (6.3.12)

A characteristic feature of transition matrix P, in the case.
of its nonorthogonality, is the functional dependence of its
elements and determinant on the components of parameters q.
Investigating this feature allows us to study theiInfluence of
the afige of definition of evaluated parameters of motion q on
the accuracy of their definition. It is evident that the dis-
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continuityof. matrix P or... its, poor conditionality results inthe discontinuity or..poor conditionality of matrix Uq, also.The last leads not only. to an increase in the volume of the
multidimensional dispersion. ellipsoid, but also to an increase
in the error dispersions in defining the. separate components
of position vector q, whose values can be calculated by means
of the relation

det(P UPj)
"i det Ug (detP)2 ' (6.3.13)

where Pj is a matrix of dimensions m x (m-l), derived fromtransition matrix P by means of deleting the jth columnj

Let us note that the relations obtained which connect thecorrelation matrices of errors in defining parameters g and qand their determinant arecorrect not only where the parameters
of motion are defined.as.a result of the space-time filtration
of a signal with regularly changing amplitude and fluctuating
initial phase, but also where any other signal model is used
in the measuring complex (see §3.1). These expressions arecorrect with the presence of matrix Baa of errors in a priori
data, which must undergo a transformation in conformity with
expression (6.3.5) in the transition from initial to terminal
parameters. Moreover, these relations also take place in using
an automatic mode for measuring parameters with atpriori datain systems of space-time filtration, when the evaluation of the
parameter vector at a defined moment of time t0 is donein proportion to the signal integration, and a priori data con-
tinuously changes with--the value of. the corrections obtained,
approaching its real value.

The relations derived will also remain valid for the case
where a complex of several electronic systems are used, dis-tinguished :either by the p.arameters of the signal used, or by
the spatial configurations. of the receiving antennas, etc. Actual-
ly, due to the linearity of the equations examined, which are
used in defining the corrections to the precise parameters, and /160that the. corresponding elements of different matrices W and U
have the same physical dimensions, the corrections vector Aq andthe integrated correlation .matrix-of errors in.defining para-
meters q can be represented by the expressions

1, ' (6.3.14)
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WqS =

(6.3.15)

where

9 1
Q/1 -(q,) E ' aNo 2

is the matrix of ACF signal first partial derivatives of the nth -

measuring system according:to parameters q:
N

U = - Z - (q) - ~k(a)
No 2

k=l

is the matrix of ACF signal second partial derivatives of the
nth system. , Applying.,ttranisf6r iti hsi (6.3.8) and (6.3.9) to-'
matrices Wqn and Uqn, and inserting the relations derived in
expressions (6.3.14) and (6.3.15),.we obtain

AP=( PTU lPS n-IAq- P Ug,. P P Wg,, 1

Bqs PT UgP ,

\n-l

which are equivalent to relations

Aq = P-lAg, (6.3.16)

BqS = p- 1 BgS( P -
1 )T. (6.3.17)

In formula. (6.3.17), matrix BgS is an integrated matrix of /161
errors in defining parameters g in the.complex.

Thus, for a complex of. different electronic.meters, the
precise properties for defining parameters of motion in dif-
ferent systems of Beference. can also be represented in the form
of a set of properties for definitions with the use of the
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initial system.of .parameters. g..and: the properties of transition
matrix P to terminal parameters -of motion q. The nature of the
transformation of errors in. evaluating parameters. in a complex
of different measurement systems will.remain,. the same as in
using any one of them. However, the accuracy of the evaluations
obtained is significantly improved.

In defining, in addition to the parameters of motion, the
systematic errtr in producing the ACF signal, as a function,
in particular,"of the constant mismatch of frequencies of the
received and reference signals, the secondarily evaluated para-
meter can be interpreted as an additional coordinate in the
systems of reference examined.. The dimensionality of the
enlarged systems of reference becomes a unit larger, since the
axis of the additionally evaluated parameter (of frequency
correction).becomes their axis. It is characteristic that
in all systems of reference examined, this additional parameter
will be the same. Therefore, the peculiarity of the transition
matrix between' the.enlarged systems of reference is that
the relative character of. the .error transformations in evalu-
ating these sets of parameters will be preserved during the
transition from one system off reference to another, the same as
with their combined definition.

From expression (6.3.11), we can see that for a complete
quantitative characterization of the-accuracy of defining the
parameters of motion in the newly selected systems of reference,
we must know the determinant of the error correlation matrix for
evaluating the parameters of initial system g and transition
matrix P. In this connection, if the more precise properties
for defining initial parameteris g are investigated, then for
a comparative analysis of the precision characteristics for
defining other systems of parameters q, it is sufficient in
some cases to study the properties of -the matrices of transition
from.initial to..terminal parameters, by means of which the results /162
of orbital, navigational or geodetic definitions will be re-
presented. Of the entire set of newly applicable systems of
parameters q, whose components have identical dimensions, the
best one is the one whose tran.itn nmatrix determinant will be
greatest in the entire range of definition of the parameters or
its individual, practically used range.

5.4. Method..of Analyzing Transition Matrices

The purpose of investigation transition matrix P between
the 'differential components of .the position.vector, given in
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the area .of...initial conditions g of. a-rectangular system of co-
ordinates. OXYZ .(ig. 6.1) and ,the selected terminal parameters
g, is the definition of those areas. of definition of the in-
dividual elements in a.finite system of parameters where the
transition matrix becomes singular. These areas will be called
"zones of reduced accuracy." Moreover, it is, necessary to
define those areas of parameter definition where the elements
of the transition matrix do not exist or are close to these
values, and there is practically no possibility of. solving the
problem of defining the selected set of parameters.

For finding the zones of reduced accuracy in defining
different sets of parameters, it is advisable to represent
position vector g in the form of the product of some matrix
factors whose elements are functions of one or several parameters.
Such a represent~tiion of position vector g allows us to write
transition matrix"P and its elements rather compactly, and is
also an analytical means of investigating the properties of
the transition matrix.

We should note that the 6iements of the transition matrix
which represent scalar functions can also be expressed by means
of the product of the matrix factors. The proposed method of
investigation .does not require representing the elements of the
transition matrix inan expanded form or varying the values of
the orbit parameters in analyzing each of the matrix elements
separately. This method assumes that transition matrix P is
in the form.of a matrix row of vectors, and that these vectors
are investigated up to their degeneration to zero-points, and
that the proportionality between them is defined.

Moreover, the representation of the transition matrix
elements in the form of the product of the matrix factors offers
the possibility of derividg tthe.determinant of this matrix by
an analytic method. In this connection, the process of cal-
culating the determinant.and analyzing the matrix is signi-
ficantly simplified, since those elements.which yield similar
terms during.mathematical transformations are excluded from
the calculated relations.

We will demonstrate the method of analyzing transition
matrices by analyzing the matrices of..transition. between dif-
ferentia-l;-.omponents of a.position vector, given in the area
of initial conditions of a rectangular coordinate system OXYZ,
and the Kepilrian elements of orbit:

qT= Ii  e a Moll.
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1.. The fundamental form~.of._representing transition matrices /163

For investigating the properties of transition matrices which
define the .transformation of errors in navigational or geodetic
definitions in converting from ones.system.of. parameters to
another, and also for definition errors. as. a function of the
area of definition of. the evaluated, parameters, it is suf-
ficient to study the properti s of these matrices only fin,"the
form of (6.2.23). Therefore, such a notational form is funda-
mental. Actually, the expression which defines the relation-
ship of the ACF signal second derivative matrices in defining
the components of initial g .and terminal systems of parameters
q, can in the general case, be represented by the following
function:

PTUg P., PUg P. . . . P 1  Ug P.m

PTUg P. PT2Ug P. 2  '2Ug P.mn

Uq=

PT,,UgP.I P' UgP.2 . PmUgP.,,

(6.4.1)

which shows that iith. non-null matrix U, matrix Uq will be sin-
gular (det Uq=O) when one or several columns P 5 are null, or
there is proportionality between them.

Thus, for example, if the jth column of matrix P is a
null vector, then for all n and k (n, k=l, 2, ... , m), we will
have the identity

PTUgP.,, P T,U g P.i

(6.4.2)

i.e., the jth row and the jth column of matrix Ug will degenerate
to zero. If, between the jth .and ith columns of matrix P., pro-
portionality (let P: = P-i) is. observed,. then for all elements
of matrix Uq which contain the given-columns, the.relation will
be true

PT UgP.i/P- UgP. I PUgP.,/pTiUgP., _ .
PTUP.iPUP.i PUP../P./ (6.4.3)
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This corroborates the. fact..that, between the jth and ith
columns..(rows) of matrix Uq there is proportionality, ie.,
matrix Uq is singular. Therefore,. in investigating the effect
of a. transition matrix on. the singularity of defining parameters
q, it is sufficient to study only the columns of these matrices.

2. Criteria for :nalyzing : transition matrices

In order to find the. area of reduced -accuracy in defining
Keplerian parameters of orbit, due to the characteristic
features of transition matrices which directly reflect the pro-
perties of the indicated parameters' space, it is necessary to
define the areas of definition of Keplerian parameters of orbit
for which the.determinant of matrix P. has a minimum-value or is
equal to zero. This willbe the area of space of the Keplerian
elements in which matrix P is close to singular or is singular. /164
First of all, we will attempt to find those areas of the
definition of Keplerian',elements of orbit for which the deter-
minant of the matrix approaches zero. In this connection, it
will be assumed that the determinant of the matrix is equal to
zero only where the columns of matrix P.degenerate to a null
vector or proportionality (linear function) is observed between
them.

We will study a transition matrix written in the form of
(6.2.23), i.e., we will examine columns P.j of. the transition
matrix in their degeneration .to null vectors and -in the pro-
portionality-between them.

From the preceding material, we can see-that none of the
matrices which comprise the .factors in matrix column P.f de-
generate to null matrices, nor with real values of the Keplerian
parameters of orbit and instantaneous argument E. Therefore,
elements P j of the transition matrix can- take -zero values only
in cases-where the linear combination of elements of the
matrices, as a function of argument E .(of the elements of matrix

41 and derivatives of its components according to.parameters a,
e, MO), and the elements of other matrix factors (the elements
of matrices G, H,. S, and their derivatives with respect to angle
(g, i, w) are equal to zero.

As the criterion Or .the, degeneration. of any of the vectors
P.f to a null vector, we can .take the condition of equality to
zero of the modulus of vector P, or its square. Actually, P.j
can be a null vector only when there is the equality

PTjp. = 0. (6.4.4)
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We can accept the condition of equality to zero of the
modulus .of. the difference of- two.tvectors., .one of-which is the
vector in question., for example, Pj, and the second.is the pro-
duct of some real. scalar magni.tude a..in:. the.second,.vector P it
as the condition of the linear, function (proportionality) ot two
vectors P.f and P.i. If the productt' d formed by

(P.I- aP.) (P--aP.)= (6.4.5)

then it is possible -to show that this expression will equal
zero only when there is proportionality between the components
of vectors P.J and P.i, and a is the proportionality coefficient.
Consequently, the problem of studying the proportionality of two
vectors is the: problem.of finding.:a real.value of coefficient
a, not equal to zero, by which, considering the area of defini-
tion of. parameters q, the equality will be obtained

(Pi - aP. - (P. - aP.)= . (6. 4.6

If this equality is derived with a=O, then- condition (6.4.4)
is factually.fulfilled, i.e.,-P.j is the null vector.

It is possible to show that if P.j and P.i are orthogonal,
then expression (6.4.5) leads to the relation

PT, P-i +a2PT, P., P...p .± 2PT (6.4.6)

and can be equal to zero in the range of definition of parameters /165
q, in which both vectors are null,. since orthogonal. vectors are
linearly independent.

We must. note that: .condition .6-4.6) is satisfied when the
Bunjakowski-Cauchy. inequality., .used in.[4] for describing the
general' properties -of navigational -methods resulting from the
features of. fundamental matrices..,with averaged elements, is
converted to.an equality.
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On.the basis .of. the. investigations ..shown in defining and
analyzing.the squares of the moduli, of .the. vectors in matrix P
(6.2.23), we can come to the.following conclusions.

The square of the modulus.of the.first vector PTIP for
elliptical motion is not equal to zero, whatever the values of
the Keplerian elements are.. However, when time t0 corresponds
to the moment of the SV's passage over.the equator, derivatives
of the coordinate components -of position vector g with respect
to the angle of deviation of the orbit. are equal to zero. More-
over, the square of-the :modulus of velocity components for this.
vector in-parabolic orbits is equal to infinity; for hyperbolic
orbits, its value becomes negative. This indicates that for
describing. parabolic and hyperbolic orbits, it is necessary
to use another system of parameters. In particular, for parabolic
orbits, it is sufficient to r t6in only five parameters, since
the sixth can be determined by the limitations superimposed on
the existencel.of a parabolic.orbit [28]. -For hyperbolic orbits,
the semimajor axis loses the value which it had in elliptical
motion.

For elliptical orbits, the square of the modulus of the
third vector PT P does not have zero values. However, it
shows that derivatives 6f the coordinates components of position
vector g along the parameter of angular distance of the ascen-
ding node with i, w = 90 and E.= 0 (moment of time to corresponds
to the SV's .passage of the vertex.point in a polar orbit) are
equal to :ztero. With these values for the deviation or the orbit
and angular distance of the perigees for cases where moment to
corresponds to the SV's passing over the equator, the deriva-
tives of the velocity components along the parameter of the
angular iervait of the ascending node are equal to zero.

In defining the square of the modulus of the second,
fourth, and subsequent columns .of matrix P, we come to the con-
clusion that these columns do not.. degenerate to zero, since the
squares.of their moduli are defined by 'the sum of the squares
of the last factor's. elements .which, whatever the values of
argument E.:and the. other.intraplanar. parameters, does not
degenerate to a null vector.

In investigating matrix P's proportionality between columns,
data were obtained.which show that between the first and second,
fourth, fifth and sixth vectors (columns) of expression (6.2.23),
proportionality is not, ,bserved.. These vectors are mutually
orthogonal, and since none of them are non-zero, then condition
(6.4.6) is not satisfied.
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We should emphasize .that in investigating a transition
matrice with proportionality between columns, special
attention .should be. turned .to, the vector.s which contain deri-
vatives of the position vector.components with respect to para-
meters of identical dimensionality (in particular, with respect
to angular elements), and to those ranges of parameter defini-
tion in which, with respect to the physical expression, one
element of orbit or another loses sense. Thus, investigations
of expression (6.4.5) for the second and sixth columns of the
matrix showed that it becomes- equal to zero with .l=-l for e=O.
The equality to zero-of. the expression referred to.indicates
that in this case .the transition matrix becomes singular(i 7 K
and it is not possible to define all six Keplerian parameters. /166
This is clear, since in the given case the ellipse degenerates
into a circle, and for a.circle, the.parameter of the angular
interval of the perigee , 'loses meaning. In this connection,
for defining the SV's initial .position .in orbit, corresponding
to moment t0 , one angular parameter is sufficient. For the
coordinate components of these.vectors, proportionality with
any value of eccentricity is. observed' when time t0 corresponds
to the moment of the SV's passing the point of the perigee or
the apogee.

Expression (6.4.5) for the second and third columns of tran-
sition matrix P in the condition where the longitude of the
ascending node loss,.. its physical sense (i=0) satisfies re-
quirement (6.4.6).. This indicates that proportionality is ob-
served between the second and thirdcolumns of the matrix (deri-
vatives of position vector g with respect to scalar values n and
w). Therefore, the Keplerian elements of orbit with small
values for the angles of deviation are not veryeffective.
For describing these orbits, we must use another system of
parameters. In particular, in reference [3] it is recommended
that the cosine of this angle be used instead of the angle of
deviation; however, the effectiveness of such a substitution
requires further .investigation.

For almost circular orbits with small angles of deviation
along with proportionality between the second and third columns,
proportionality is also observed..betweenthe third and sixth col-
umns' of the matrix.

For defining the proportionality. between columns P and
P.i, other criteria can be used., ..In. particular, it is p ssible
to introduce "angle" 0 between vectors P and P.i, by analogy
with the scalar product of vectors in three-dimensional euclidean
space, having determined it from the relation
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cos2O (P .P) 2 (PT P.) (PT i) (6.4.8)

The values of the parameters which satisfy the condition
cos 2 =1 define the range of their possible definition in which
matrix P. becomes singular because of the proportionality of its
columns. Investigations with the aid of the criterion indicated
confirmed the correctness.of the conclusions drawn. earlier and
showed that the cosine of the angle between.columns P _ and

P.3, 2 and P 6 P 3 and P.6 iAs connected correspondingly with
parameters i, e, i and e by--, -, 9 a functional dependence which
with i, e +0 reduces the cosine of the angleto its maximum value.

With i, e=O in asystem of.Keplerian parameters as in the
,system of reference used for describing the SV's position vector,
there:is a linear .dependence between some of,its components.
These correspondences are the angular . rameters-w, n, and M0 .
The linear dependence leads to the same response of the ACF signal
as in using the parameters indicated, which causes proportion-
ality not only between the columns of the transition matrix,
but also between the columns and rows of'the ACF signal second
derivative matrix with respect to defined.parameters q. For
orbits with eccentricity or. inclination close to zero,, the matrix
of ACF signal second derivatives, depending on the position of
the measuring agents used and. their complex,.is badly specified,
resulting in significant errors in the definitions. The con-
ditionality of the matrix can be improved by using other elements
of orbit.

Thus, these investigations show ,that the zones of reduced
accuracy, due to the characteristic properties of the space of
the Keplerian parameters of orbit (the latterare refracted /167
in the properties of.transition matrix P), are observed in the
ranges of their definition in which one or several elements
lose physical sense. In this connection, for a unique defini-
tion of the SV's movement,.it is possible to use a smaller
quantity of, independent .generalized .parameters (the case of
degeneration of an ellipse into.a circle or.parabola). or to intro-
duce new parameters, of..orbit (the.case of elliptical equatorial
and hyperbolic..orbits) instead of the Keplerian elements of orbit.

For elliptical equatorial orbits(i=0) and. for the case
where elliptical orbits degenerate,into. circulatrorbits, trans-
ition matrix P becomes singular and it is not possible to define
all six Keplerian parameters.
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In the... proximity of .setting .,the Keplerian orbit parameters
directly adjacent..to the values in which. transition matrix P is
singular, this matrix will be close to singular, which causes
significant zones of reduced accuracy in defining:the parameters
of motion .q to appear.

5.5. Characteristics of Parameter Definition in Rectangular and
Curvilinear Systems of Reference

1. Rectangular systems

As the initial system of parameters g, we will choose a
system of elements which. describe the initial conditions of the
SV's motion in some rectangular system of reference, for example,
in a system of coordinates connected with the observer. Then,
selecting the coordinates and velocity of the SV in any other
rectangular coordinate system q, for example, in different geo-
centric systems of reference, we will discover that, due to the
orthogonality of the matrix transition which describes the
transformation of differentials (6.2.5), the modulus of its
determinant is equal to one.. This.means that the possibilities
of making the parameters of motion, mere precise in an arbitrary
rectangular system of reference We not functions of the range
of definition of the coordinates and velocity and are identical
for all rectangular coordinate systems.

-2. Curvilinear systems

For the sake of convenience, we will examine the rectangular
geocentric system of reference whose plane OXY coincides with
the basic plane of the curvilinear systems of coordinates, and
axis OX coincides with some characteristic direction with
respect to which angles are read in curvilinear systems, as the
initial system. Inri this connection, -J5s transition matrices
P, we will imply one of the matrices defined by relation (6.2.15).
The transformation matrices indicated.are quasidiagonal; there-
fore, their determinants are expressed by the determinant of
direct transformation matrices of. differentials Wc, Ws and W
The latter can easily be defined, since differential direct
transformation.matrices are .diagonal (6.2.12).

Thus, the, determinant, of.the. transition matrix dif- /168
ferentials of initial conditions of motion in a.spherical
coordinate system is equal to

detP J (detJ-et W )2 . (6.5.1)
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The relation..of the determinants of error. correlation,9 matrices
in making the. parameters of motion more precise for rectangular
and spherical coordinate .systems is expressed by the function

detB detB /r cos4(
_ t r (6.5.2)

which shows that the volume of the.dispersion ellipsoid in defin-
ing the initial conditions &f motion in a spherical system of
reference is increased when rK decreases and c increases.
In confrmation of this, the graph of the function which de-
scribes the change in the dimensions of the volume of a multi-
dimensional dispersion ellipsoid in using latitude c and
relation rK/rKmin, where rKmin is the.minimally possible radius,
is shown.in Fig. 6.2. If the SV's motion occurs in a circular
orbit, then the dimensions of the dispersion range for defining

fl/

600

Fig. 6.2. The nature of ,the
error ellipsoid's volume change
with :a change in spherical
latitude and relation rk/rKmin.

the parameters of motion in a sperhical system of.coordinates
will be a function of. only the latitude of the SV's position.

In the .figure, this function for several fixed values of
radius vector rK is indicated -by the solid lines which lie in
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the planes parallel to coordinate.plane KOO.

In converting. to.. parameters of..acylindrical system of
coordinates,. the expression corresponding to the transformation
of numerical values of the .volume of multidimensional ellipsoids /169
described by er!o'r correlation matrices, for making the com-
ponents of the"position vector more precise, given by the initial
conditions of motion in rectangular and cylindrical systems of
reference, have the form

Jdet Bq = det B 1 1fp (6.5.3)

Expression (6.5.3) shows, that the dimensions of the dis-
persion range. in evaluit ithe parameters of motion in a cyl-
indrical system of coordinates are a function of only one com-
ponent p of the SV's position in a given system of reference and
are not functions of other components of the parameters. With
a decrease in coordinate p, the dimensions of the dispersion
range increase, :ince errors in defining the angular parameter
in a cylindrical system increase with identical linear errors
along the parallel. They are inversely proportional to para-
meter p. Note that with p=O,. the transition matrix, correspond-
ingly, and the matrix of. ACF.signal second derivatives, with a
direct definition of the parameters of motion in a cylindrical
coordinate system, become singular. It is true that p=O loses
sense, the SV position parameter is one like Xc, and as a con-
sequence, the response of the ACF signal at this coordinate
disappears. Therefore, for solving the.problems of defining the
parameters of motion of a polar.SV in a given system of coor-
dinates over a pole or in its proximity, an increase in errors
is observed.

Thus, in using cylindrical or spherical systems of reference,
congruence of, the reference coordinate plane of these systems
with. the plane of-. orbit is considered more preferable, as recom-
mended in references [25, 26] for a.,cylindrical system of co-
ordinates. Let us recall that simplification of algorithms
for processing measurement data and..a .corresponding decrease in
computer .time .125]. are also.obtained. It .should. also be nted
that in this case, since cos4=l and r-= p., the cylindrical and
spherical. systems of coordinates .are equivalent., and only the
magnitude of the defined radius vector of the.SV influences the
definition of the parameters of motion in these systems of
reference. However., in the. general oase, oAliidt l and
spherical systems of coordinates are nonequivaient. A spherical
sytem of reference which contains two angular parameters Xs and

is more sensitive to a change in the SV's radius vector than
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a cylindrical system.

The. determinant-of the transition matrix.which establishes
the ,relation between dispersion ellipsoidS in-defining the
initial conditions of the SV's motion in geodetic and rec-
tangular geocentric systems- of coordinates is calculated by
means 6, ,the relation

det ... P(detW) 2 =(N, + H) 2 (N+ H) 2 cos2B (6.5.4)

which can be reduced to the following expression:

2 2-e (1Isn2 ) 1-e2
det P= s (2,,3sn 3 3

9g ( e ,in2 , 3/2 (I -e2in B 2

3 .. .(6 .5 .5)XacOS2B6

where s = H/a 3.

Thus in making the parameters of motion more precise in
a geodetic system of reference, the numbrical value of the
volume of the multidimensional dispersion ellipsoid is a function
both of the- coordinates at moment to of the precise parameters,
and of the elements of the reference ellipsoid with respect to /170
the plane of which the definition was made. In evaluating the
parameters of motion, the properties of the definitions are a
function of the geodetic latitude Bg an altitude H of the SV
with respect to the surface of the reference ellipsoid. With
the dimensions of the area of dispersion given in a rectangular
system of coordinates, the number values of the error ellipsoid's
volume in a geodetic system of reference increase with a decrease
in altitude H and an increase of latitude Bg. The function below
is ]hown in Fig. 6.3

(1 - e2)2

. 2 - e2(1 + sin 2 B - e 2

(1 - e2 sin2%)3/2 (1 - e sin2 Bd

(6.5.6)

which describes the changein the dimensions of the dispersion
area as a function of the geodetic latitude B and the relations
of the altitude of. the SV's position at moment t0 over the plane
of #-hreference .ellipsoid with respect' to its'semimajor axis.
For actually existing orbits, the zones of: reduced accuracy in
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defining the initial conditions of.motion in a geodetic coord-
ina system coincide with the range of their definition, for
which Bg - 900. More marked det~i oration in accuracy is observed
for polar orbits,when .the.moment..of time t0 coincides with the
moment of the SV's passage over the pole or over its proximity
in which geodetic latitude Bg exceeds 800. With Bg=90,
transition matrix P becomes singular. Therefore, the matrix
of ACF signal second derivatives, with direct definition of the /171
parameters of motion in a geodetic system of reference, will
be singular. Moreover, in some ranges of definition of para-
meters qg, which adjoin the point of multidimensional space
with a latitude equal to 900", the value of' the determinant
of the ACF second derivative matrix will be small, which, as a
rule, results in the instability of the inverse correlation matrix
and a marked increase in the error. dispersions for defining
the selected set of parameters. The.instability of the correla-
tion matrix, as we know, is a function of the fact that for
small.values of the ACF signal second derivative matrix deter-
minaht, small changes in its elements cause a change in the
elements'of the inverse matrix within significant limits. The
appearance of zones of reduced accuracy for regions of element
definition in the chosen system of parameters, in which the
determinant of the transition matrix and the matrix of A~E~
signal second derivatives approach zero is explained by this.

4r

fo

0 02 099,9 80

Fig. 6.3. The nature of changes
in the error ellipsoid volume with
changes in the geodetic latitude and
relation H/aE
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6.6. Properties of Keplerian Elements . of: Orbit

As.above, we will examine a geocentric -rectangular equa-
torial system..of coordinates as the.initial system, and the
system of parameters qT = I]i w Q a e M0_]] as.the system of
Keplerian elements of or$it.

An investigation of the properties of electronic methods
for defining Keplerian parameters of orbit will be carried out
by studying the properties of a transition.matrix which des-
cribes the transformation.of errors in definitions in converting
from initial conditions of motion in a rectangular system of
reference to the Keplerian elements mentioned. In this con-
nection, since the volume of a multidimensional dispersion ellip-
soid is used for describing the accuracy of defining the para-
meters, whose numerical value is equal to. the determinant of a
correlation.matrix (which. includes a transition matrix) with
accuracy to constants, for stud ing the indicated properties,
it is sufficient to calculate the determinant of this matrix
and investigate its value as a function of the region of
definition of the individual Keplerian elements of orbit.

.For finding the -determinant-of the matrix indicated, we
will use relation (6.2.39). In this connection, since
matrices G, H and S are orthogonal, .the detepminant.of transition
matrix P is identically equal to the determinant-of the direct
differential transformation matrix WK. Therefore, decomposi.Aqg
this determinant by the elements of the first column, with each
determinant obtained being of the fifth order with respect to
the elements in the row which contain only one non-zero element,
after the corresponding mathematical transformations., we obtain
a fairly compact expression for calculating. the determinant of
the transition matrix. Having represented this expression in
the form of ~uhction.of. coordinate and velocity components of
vector gl and their derivatives with respect to intraorbital
Keplerian elements, we derive

detP (x Y• y, , + y +.Y , ay, .. ..

_dy Ox, dya, dx, dy
det x, iA de de \a OMo
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o, o-', ±kx' xy, - , Oe

dy Oe + x- +(YI 6j1 OM

Ey, ox,. ( x, o y, oit ko, ,
-- Mo ]X -- + Y1 Oe \ Oa Mo

Se _M) - \ft e-Y de I d7-2Vim

oy oyo ,1  .v o . o , O ax, o y,--da dMo-,, -s o r-, ax, ax, ac y,

-y- Ox1 " - sin i

.a "- (6.6.1) /172

Expression (6.6.1) shows that it is sufficient to know the
projection of position vector gl on the axis of the orbital
system of coordinates OX1Y1Z1 and their derivatives with respect
to the intraplanar Keplerian parameters for finding the determin-
ant of transition matrix P. Moreover, the determinant of trans-
ition matrix P and, correspondingly, the feasibility and accuracy
&8f the definitions when Keplerian parameters are used, is not
a function of the longitude of the ascending node and the argument
of the perigee, and i-!S completely defined by the angle of devia-
tion of the orbit and the ntraorbital elements. The value of
the determinant of transition matrix P :with the orbit nearing an
equatorial orbit is decreased, and for an equatorial orbit, is
equal to zero; this is identical to the increase in the volume
of the multi-dimensional error ellipsoid for defining the Kepler-
ian parameters.

We will transform expression .(6.6.1) by substituting the
correpponding components of vector gl and their derivatives for
the intraorbital Keplerian elements a, e and MO, taken from
§6.2. As a.result of this substitution and:the execution of
a number: of,-transformations, we obtain the expression for
defining-the matrix of transition to Keplerian parameters

detP=- e sini.
2diLI (6.6.2)

As we can see, definition of the matrix of transition to
Keplerian parameters is a function of only three elements: a,
e and i. Moreover, it .is: a function of-the gravitation con-
stant of central body j around which the SV rotates.
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The essential moment is when.-the eccentric or true anomaly
is taken as the .independent.var.iable, and ,the. determinant of
transition matrix P,.is not a.f unction of- the indicated instan-
taneous varij1bles corresponding to moment to. This attests to
the fact that the accoracy. in defining.Keplerian parameters (t'i
the sense of the volume of.a multidimensional error ellipsoid
is not a function of which. moment of time the initial conditions
are defined in a rectangular system... The latter, naturally,
is true only in the case where the determinant of the correlation
matrix of errors in defining the initial conditions is not a
function of moment t0.

From expression (6.6.2), it follows that transition matrix /173
P between the differentials of the.SV's position vector compon-
ents, given by the initial conditions of. a rectangular system
and by the Keplerian elements, is related to. a class of non-
orthogonal matrices. In this connection, since the determinant
of transition matrix P is a function of some Keplerian elements,
we can assume that a system of Keplerian parameters is a multi-
dimensional, nonorthogonal,- special oblique-angled system of
reference. The distinctive feature of the given oblique-
angled system of reference is that the relative position of
its vectors is-,acfunction of the magnitude of eccentricity e
and deviation of orbit i.

The functional dependence of the relative position of the
basis vectors on the indicated Keplerian elements results in
the fact that, with a change in the values of eccentricity e
and angle of deviation i, not only the'form of the multi-
dimensional error ellipsoid for definign parameters q is changed,
biat also. its volume. Thus, with a decrease in the eccentricity
or deviation, the volume of the ellipsoid increases, and in
the limiting case where e + 0 or i + .0, its value approaches
infinity. This is a result of.the degeneration -"b the
hexaparametric system of Kepleri.an parameters, due to which
proportionality.is observed between columns which are a product
of vector g: with respect to. the angular interval of the perigee
and the mean anomaly if e = 0. With i=0, there is proportionality
between the.derivatives of. the ..components of vector g with res-
pect.to theparameters of longitude of- the ascending node 0
and the angular interval of the.-perigee w.

Thus, the zones of reduced- accuracy in defining the Kep-
lerian parameters directly border upon the areas of their
definition, inwhich one or several, 'elements lose physical sense.
The loss of physical sense by the .individual parameters is due
to the degeneration of the hexaparametric system of Keplerian
elements into a system with a smaller number of parameters. Thus,
for example, for describing the-.angular position of. the SV with
movement.ina circular equatorial orbit, instead of three elements
Q, w and MO, only one angular parameter equal to the sum of the
latter should be introduced. Let us notethat the use of systems
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with a smaller. .number .of parameters. does.not allow, us to des-
cribe the space-time position- of, the SV. precisely enough with
its movement in -almost circular and almost equatorial orbits.
For characterizing,similar orbits, as in the general case,
knowledge of the numerical, values.of- the six independent constants
is necessary. However, it is expedient to use the system of
Keplerian parameters for.defining the elements of the orbits
mentioned above. For these ,kbits, other .systems of parameters
should be.used., among which are systems which contain elements
representing a linear .combination of .the.angular interval of the
ascending node, the perig -.and the mean anomaly.

Expression (6.6..2) offers the possibility not only of
defining the position of the zones of reduced accuracy resulting
from the properties of the space of the Keplerian parameters
of orbit, but also quantitatively evaluating the deterioration
in the accuracy of definitions with respect to the increase in
volume of the multidimensional ellipsoid of errors in trans-
ition to these ,o nes. Since the determinant of transition matrix
P.is a component part of the determinant of the correlation mat-
rix of errors in evaluating Keplerian parameters which, with
accuracy to constant factors, is numerically equal to the volume
of the multidimensional. dispersion ellipsoid, then by means of
expressions (6.3.10).and (6.3.11), we can. show that the relation

K = det P i ; det P I

(6.6.3)
where [det P]max is the maximum value of the determinant of /L47
transition matrix.P, can be wrftten in the form

K = Ve/Ve min' (6.6.4)

where Ve is the volume of.the ellipsoid of errors in defining
Keplerian parameters of orbit.with. any assignment of eccentricity
and angle. of deviation; Ve min is the volume of the error ellip-
soid.with e=l and i=90 0 .

It is natural that between-relations (6.6.3) and (6.6.4)
there is equality only where the determinant of the correlation
matrix of errors. in making the.. initialconditions of motion
more precise in a rectangular system with a.change in eccentricity
and th ag eviii0n 4'orbit remain constant.

If the value of-the semimajor axis of Keplerian orbit
remains constant,. then-magnitude XK describes:the change in the
dimensions, of- the multidimensional area- of dispersion with
changes in eccentricity and angle. of deviation. (Fig. 6.4).
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Fig. 6.4. Nature of the change
in the volume of the error ellip-
soid with a change in the eccen-
tricity and angle of deviation of
the orbit.

With. the same values for the determinant of the correlation mat-
rix of errors in determining the initial.conditions, the dimen-
sions of the multidimensional ellipsoid of. errors in defining
the .Kepi er ian~p~&a es, attain -minimum, .values with e=1 and i=90 .
In this co-nection, the.,value of magnitude K is equal to one.
With a change in eccentricity- or angle of.deviation to the
side of their decrease,. the dimensions of the. error ellipsoid
increases, attaining an..infinitely large magnitude with e -+0
6±'di +0. It.is natural that the value of coefficient K,
ith the same values of eccentricity.and angle of deviation,

also approaches infinity.

Since with a. constant .value of,.the. semiuiajor. axis the co- /175
efficient (6'.6.3), is a function of.two variables K=K(e,I),
then in the range...of definition. of.,parameters e and i
function K(.e,i) is represented.,by.a. plane.. In .the figure, only
\part of..this. plane,. which limits the .areas of definition of the
'eccentricity..and .angle of deviation within the limits of e=l-

.025.; i=90 0-10 .5, is shown. In this connection, the lines in
e plane are the signs of the intersection of the given plane

with planes ..parallelAto coordinate, i.e., these lines show the
nAture of the change in coefficient K with a. change in one of
it,# Keplerian elements within the .limits indicated above and with
a. ixed value of the other parameter., .Itis clearly seen that
wit a change .in eccentricity within:.the limits of e=1-0.4 and
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angle of .orbital deviation. within :the lmits, of. i=9.00 -25 0 , the
volume of the multidimensional. ellipsoid. of errors. in defining
Keplerian elements is increased. not more. than six times. The
accuracy is significantly impaired when the value. f the
eccentricity (angle of deviation) is lower than 0.01 (10).

6.7. Systems of Elements Similar' to Keplerian Elements.
Canonical Parameters of Motion

In examining systems of elements similar to Keplerian
and canonical parameters of motion, it is expedient to use
an inertial geocentric rectangular coordinate system as the
initial.system,. ad. as the.intermediate system, a system of
Keplerian elements. Therefore, for the sake of convenience,
we will introduce the following product into the transition
matrix between the differentials of the position vector com-
ponents, given.by the initial conditions of motion in a rectan-
gular system of coordinates and the elements of the systems
examined

Pi = PNi.

in which matrixP..describes the transformation of differentials
in converting from an intermediate to a rectangular. system of
reference, and matrix Nu defines the connection between the
differentials of. the systems of.parameters examined and
the Keplerian elements of orbit which emerge as the inter-
mediate system of reference. In this connection, for evaluating
the properties of canonical parameters of motion and parameters
similar to Keplerian elements, it is also necessary to analyze
the properties of the determinant of matrix Ni.

1. . Elements. of -orbits similar to Keplerian elements

As systems of parameters similar to Keplerian parameters,
we will examine a modification of .a system of Keplerian para-
meters which is described by substituting some of its elements
for others which are more convenient for solving problems.

In Table 6.1, some modified systems of..elements and the
determinant of the. matrices of secondary, tr Ansition Ni and the
matrix P. are shown., and-also the ..physically realizable values
of parameters.in which det.P r ' 0. As we can see from the table,
the use of parameters. similar to, Keplerian. parameters leads to
unequal accuracy in. their definition .inthe entire region of
assignmn of these parameters. The volume of the error ellip-
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Table 6.1

ea s or para-7pS.Chara th ?b-det Nd det P ewh ch

Sa forp (- e2) - eJ la X eO; i-
-_ X sin i/2(1 -e 2)

2 efjp - 1 ,2ae ' 1/I .sini/4/a i -- 0

3 a forT g"./3= /a -- et'sin i/6i e -* 0; i -+ 0

4 Mo 0fort -/'a/a(- eu2 sin i/2a e-0; i-0

5 i :foros i - I/sin i e: 1//2 e - 0

6 e, 0, Moforjk= e cos ,; h=e sin ,;
M, =<ew M4 o - lie Va sin i/2 i- 0

b= cos i;
7 i, e, w, Mfor k=ecoso ; ho-esino; 1/esini --pa-e2

tM, = W + Mo
8 , for q, =sin i cos,-; p, = sin i sin; -;

8, e , k ='e cos (o - 2); hl=esin(w o); --le sin i cosi !-a/2cosi i-90 °

Mo M+ = j+- Moo0
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a a = 3I I=MN a(X 0/-- to

Delaunay
Delauray s H=V1/a(1I -e 2)cosi; L=V'a: 2parameters 2

2 HghLG g G= ; =G/a(l -- e2); eVasini -1

h= P; I= Mo

Is't type -p2 =a(l -e)(1--cosi); L= /a
Poincare 2

3 p et r = - (0 + Q); 1=Va' (1 -1/ 1-e); e p/a sin 1

p2 w wLp, -- 9; = + 2 M

2nd type
Poincare. Z2 =}/P2 COS 2; L =/a;4 r - 2

--14 pa rameters l /2p sin ( - 9); ,= /2p, cos (w + Q); e /ai sin I
2 E=1/2psin ; +=w + -(I)



soid in evaluating, the parameters..,is ..a, function..of..the s:e-i /178
m ~or axis. For the majority of..systems, with.a decrease in
the semimajor. axis , ,the. .volume . increases. As in the. case of
Keplerian .parameter-s of..orbit, the '.properties: o f. elements simi-
lar to Keplerian elements do.,not depend. on. the longitude of the
ascending node and the angular interval of.. the.. perigee.. For
actually existing,.orbits (a ' 0) , transition matrix Pi will
be singular in the region of assigning defined parameters in which
those separate.from them (w. with e -+ .' and 0 with i + 0) lose
physical -sense,:.and. for-defining. the space-time position of
the SV, knowledge of, the smaller number o.f parameters &ts suf-
ficient.

Let .us note that the given tables clearly emphasize the
Advantage of using separate systems of elements for solving
problems of making unknown parameters of.motion more precise for
defining the class of orbits. For example, the system of para-
meters q6 for almost circular :'rbits,q 7 and qg for almost equa-
torial orbits do not result in the appearance of the matrix
characteristics, and..corres~pondingly offer the possibility of
solving the problem of defining the chosen composition of
paramaters .to the end.

2. Canonicl.. parameters

Let us examine canonical :parameters of-motion which are
.more. often .used in astronomy for. investigating, the characteris-
tics of heavenly bodies. The. canonical parameters of motion
can be used successfully for describing the laws of motion of
a SV.

The characteristics of several systems of canonical para-
meters are shown in Table 6.2. From the data shown in the table,
we can see that the transition matrices which describe the
relation between the.differentials- of .initial.. conditions of
motion in a rectangular inertial .system.of:.coordinates and the
canonical parameters are.orthogonal mapping matrices

-whose whose -determinant, -.as. we .know, is equal to -1. Therefore,
the volumes, of. the multidimensional, ellipsoids of. errors in
defining the different, systems,.of. canonical parameters are
identical. and equal to the volume of. the. dispersion, ellipsoid
for defining, the- iniEial.iconditions. in. a rectangular-system of
reference.. Moreover, .transition,.from.one. system of..cahonical
parameters. to any other is done by means of..orthogonal transi-
tion matrices..

Thus, the. features noted, above ,for defining systems of
parameters of- motion which- have several. values for the com-
ponents, of -these. systems, are. due to. the specific properties of
multidimensional spaces. of the parameters examined and are
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connected with-losses of .physical sense of .the- individual co-
ordinates of cylindrical, spherical and geodetic systems, and
also of. individual elements of different systems of Keplerian
and similar. parameters of orbit, which can be eliminated by
a rational transition to another system of reference. The
different rectangular coordinate systems and systems of canonical
parameters of motion are free of these features because of
their intrinsic isometric properties.
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